A. | $\sqrt{2}$ | B. | 2 | C. | 3 | D. | $\sqrt{3}$ |
分析 設(shè)四面體ABCD的外接球球心為O,則O在過△ABD的外心N且垂直于平面ABD的垂線上,且點(diǎn)N為△ABD的中心.設(shè)P,M分別為AB,CD的中點(diǎn),則N在DP上,且ON⊥DP,OM⊥CD,從而可求DM,MN,進(jìn)而可求四邊形DMON的外接圓的直徑,即可求得球O的半徑.
解答 解:設(shè)四面體ABCD的外接球球心為O,則O在過△ABD的外心N且垂直于平面ABD的垂線上.
由題設(shè)知,△ABD是正三角形,則點(diǎn)N為△ABD的中心.
設(shè)P,M分別為AB,CD的中點(diǎn),則N在DP上,且ON⊥DP,OM⊥CD.
因?yàn)椤螩DA=∠CDB=∠ADB=60°,設(shè)CD與平面ABD所成角為θ,
∴cosθ=$\frac{1}{\sqrt{3}}$,sinθ=$\frac{\sqrt{2}}{\sqrt{3}}$.
在△DMN中,DM=$\frac{1}{2}CD$=1,DN=$\frac{2}{3}DP$=$\sqrt{3}$.
由余弦定理得MN=$\sqrt{1+3-2×1×\sqrt{3}×\frac{1}{\sqrt{3}}}$=$\sqrt{2}$.
∴四邊形DMON的外接圓的半徑OD=$\frac{MN}{sinθ}$=$\sqrt{3}$.
故球O的半徑R=$\sqrt{3}$.
故選:D.
點(diǎn)評 本題考查四面體ABCD的外接球,考查學(xué)生的計(jì)算能力,確定四面體ABCD的外接球球心位置是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 4 | C. | $\frac{3}{5}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P?Q | B. | Q?P | C. | P=Q | D. | P∪Q=R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com