已知關于x的方程
13x-13-x
13x+13-x
=k有解,則k的取值范圍是
 
考點:函數(shù)的值域
專題:函數(shù)的性質及應用
分析:令13x=t>0,則方程
13x-13-x
13x+13-x
=k化為k=
t2-1
t2+1
=1-
2
t2+1
,由t>0,可得0<
1
t2+1
<1
.即可得出.
解答: 解:令13x=t>0,則方程
13x-13-x
13x+13-x
=k化為k=
t2-1
t2+1
=1-
2
t2+1

∵t>0,∴0<
1
t2+1
<1

∴-1<k<1.
故答案為:(-1,1).
點評:本題考查了指數(shù)函數(shù)、反比例函數(shù)的單調(diào)性,考查了換元法、方程的解法,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)的二次項系數(shù)為a,且不等式f(x)>-2x的解集為(1,3).
(1)若當x≤-1時,不等式f(x)+5a<0恒成立,求a的取值范圍;
(2)當x∈[0,2]時,f(x)的值域是[-6,-
3
2
],求實數(shù)a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
sin6x
2x-2-x
的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:|1+
x-1
3
|≤2;命題q:x2+2x+1-m2≤0(m>0).若?p是?q的必要而不充分條件,則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式(x-1)
x+3
≥0的解集是(  )
A、{x|x>1}
B、{x|x≥1或x=-3}
C、{x|x≥1}
D、{x|x≥-3且x≠1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax     (x≤0)
3a-x
1
2
(x>0)
(a>0,且a≠1)是R上的減函數(shù),則a的取值范圍是( 。
A、(
9
4
,3)
B、(0,
1
3
]
C、(0,3)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x),g(x)(g(x)≠0)分別是定義在R上的奇函數(shù)和偶函數(shù),當x<0時,f′(x)g(x)<f(x)g′(x),f(-3)=0,則不等式
f(x)
g(x)
<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
lnx
x
,x>6
e-x(x3+3x2+ax+b),x≤6
,其中a,b∈R,e為自然對數(shù)的底數(shù).
(1)當a=b=-3,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當x≤6時,若函數(shù)h(x)=f(x)-e-x(x3+b-1)存在兩個相距大于2的極值點,求實數(shù)a的取值范圍;
(3)若函數(shù)g(x)與函數(shù)f(x)的圖象關于y軸對稱,且函數(shù)g(x)在(-6,m),(2,n)上單調(diào)遞減,在(m,2),(n,+∞)單調(diào)遞增,試證明:f(n-m)<
5
6
36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了解某地區(qū)學生健康情況,從該地區(qū)全體學生中隨機抽取16名學生,用視力表檢查得到每個學生的視力狀況的莖葉圖(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉),如圖,若視力測試結果不低于5.0,則稱為“好視力”.
(1)從這16人中隨機選取3人,求至少有2人是“好視力”的概率;
(2)以這16人的樣本數(shù)據(jù)來估計整個地區(qū)的總體數(shù)據(jù),若從該地區(qū)全體學生(人數(shù)很多)中任選3人,記X表示抽到“好視力”學生的人數(shù),求X的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案