4.已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,向量$\overrightarrow{a}$=(Sn,an+1),$\overrightarrow$=(an+1,4)(n∈N*),且$\overrightarrow{a}$∥$\overrightarrow$
(Ⅰ)求{an}的通項(xiàng)公式
(Ⅱ)設(shè)f(n)=$\left\{\begin{array}{l}{{a}_{n},n=2k-1}\\{f(\frac{n}{2}),n=2k}\end{array}\right.$bn=f(2n+4),求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (Ⅰ)通過$\overrightarrow{a}$∥$\overrightarrow$可知Sn=$\frac{1}{4}$${{a}_{n}}^{2}$+$\frac{1}{2}$an+$\frac{1}{4}$,進(jìn)而與Sn-1=$\frac{1}{4}$${{a}_{n-1}}^{2}$+$\frac{1}{2}$an-1+$\frac{1}{4}$(n≥2)作差、整理可知數(shù)列{an}是公差為2的等差數(shù)列,進(jìn)而計(jì)算可得結(jié)論;
(Ⅱ)通過(I)可知b1=a2=5、b2=a1=1,當(dāng)n≥3時(shí)bn=2n-1+1,整理即得結(jié)論.

解答 解:(Ⅰ)∵向量$\overrightarrow{a}$=(Sn,an+1),$\overrightarrow$=(an+1,4)(n∈N*),且$\overrightarrow{a}$∥$\overrightarrow$,
∴Sn=$\frac{1}{4}$${{a}_{n}}^{2}$+$\frac{1}{2}$an+$\frac{1}{4}$,
∴當(dāng)n≥2時(shí),Sn-1=$\frac{1}{4}$${{a}_{n-1}}^{2}$+$\frac{1}{2}$an-1+$\frac{1}{4}$,
兩式相減得:(an+an-1)(an-an-1-2)=0,
∵數(shù)列{an}的各項(xiàng)均為正數(shù),
∴當(dāng)n≥2時(shí),an-an-1=2,即數(shù)列{an}是公差為2的等差數(shù)列,
又∵a1=S1=$\frac{1}{4}$${{a}_{1}}^{2}$+$\frac{1}{2}$a1+$\frac{1}{4}$,解得:a1=1,
∴an=1+2(n-1)=2n-1;
(Ⅱ)依題意,b1=f(6)=f(3)=a2=5,
b2=f(8)=f(4)=f(2)=f(1)=a1=1,
當(dāng)n≥3時(shí),bn=f(2n+4)=…=f(2n-2+1)=2(2n-2+1)-1=2n-1+1,
故n≥3時(shí),Tn=5+1+(22+1)+…+f(2n-1+1)
=6+$\frac{4(1-{2}^{n-2})}{1-2}$+(n-2)
=2n+n,
綜上可知Tn=$\left\{\begin{array}{l}{5,}&{1}\\{6,}&{2}\\{{2}^{n}+n,}&{n≥3}\end{array}\right.$.

點(diǎn)評 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx+$\frac{k}{x}$,k∈R.
(1)若k=1,求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若k>$\frac{1}{2}$,令h(x)=f(x)+(k-1)x,求函數(shù)h(x)的單調(diào)區(qū)間;
(3)設(shè)g(x)=xf(x)-k,若對任意的兩個(gè)實(shí)數(shù)x1,x2滿足0<x1<x2,總存在x0>0,使得g′(x0)=$\frac{{g({x_1})-g({x_2})}}{{{x_1}-{x_2}}}$成立,證明:x0>x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.曲線f(x)=x2+lnx在(1,f(1))處的切線的斜率為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|x2-x-2>0},B={x|1<x≤3},則(∁RA)∩B=( 。
A.A、(1,2]B.[-1,2]C.(1,3]D.(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.曲線y=$\frac{1}{4}$x2和它在點(diǎn)(2,1)處的切線與x軸圍成的封閉圖形的面積為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知a=log${\;}_{\frac{1}{3}}$2,b=2${\;}^{\frac{1}{3}}$,c=($\frac{1}{3}$)2,則a,b,c的大小關(guān)系為a<c<b(用“<”連接).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,已知AB=AC,BC=2,點(diǎn)P在邊BC上,若$\overrightarrow{PA}$•$\overrightarrow{PC}$=-$\frac{1}{4}$,則$\overrightarrow{PB}$•$\overrightarrow{PC}$=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.過點(diǎn)(0,2)且與兩坐標(biāo)軸相切的圓的標(biāo)準(zhǔn)方程為(x-2)2+(y-2)2=4或(x+2)2+(y-2)2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,點(diǎn)$A(1,\frac{{\sqrt{3}}}{2})$在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)動直線l與橢圓C有且僅有一個(gè)公共點(diǎn),判斷是否存在以原點(diǎn)O為圓心的圓,滿足此圓與l相交兩點(diǎn)P1,P2(兩點(diǎn)均不在坐標(biāo)軸上),且使得直線OP1,OP2的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案