8.若函數(shù)y=-x2+2px-1在(-∞,-1]上遞增,則p的取值范圍是[-1,+∞).

分析 求出二次函數(shù)的對(duì)稱軸,然后利用函數(shù)的單調(diào)性列出不等式,求解即可.

解答 解:函數(shù)y=-x2+2px-1的開(kāi)口向下,對(duì)稱軸為:x=p,
函數(shù)在(-∞,-1]上遞增,
可得p≥-1.
故答案為:[-1,+∞).

點(diǎn)評(píng) 本題考查二次函數(shù)的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.平面內(nèi)兩點(diǎn)A(0,-2),B(0,2),平面內(nèi)一點(diǎn)C滿足|CA|=2|CB|,則C的軌跡方程為3x2+3y2-20y+12=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)f(x)=cos2x的周期是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列不是拋物線y2=4x的參數(shù)方程的是( 。
A.$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(t為參數(shù))B.$\left\{\begin{array}{l}{x=\frac{{t}^{2}}{4}}\\{y=t}\end{array}\right.$(t為參數(shù))
C.$\left\{\begin{array}{l}{x={t}^{2}}\\{y=2t}\end{array}\right.$(t為參數(shù))D.$\left\{\begin{array}{l}{x=2{t}^{2}}\\{y=2t}\end{array}\right.$(t為參數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=a-1+\frac{1}{2}t}\end{array}\right.$(其中參數(shù)t∈R,a為常數(shù)),在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C的方程為ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(1)求曲線C普通方程;
(2)已知直線l曲線C交于A,B且|AB|=$\sqrt{5}$,求常數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知A(a,0)(a>0),B(0,a),E(-4,0),F(xiàn)(0,4),設(shè)△AOB的外接圓圓心為C,點(diǎn)P在圓C上,使△PEF的面積為12的點(diǎn)P有且只有兩個(gè),則實(shí)數(shù)a的取值范圍是(2,10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,點(diǎn)P在⊙O外,PA,PB切⊙O于A,B,AD為⊙O的直徑,連結(jié)AB,OP,OB,BD,則圖中與∠PAB相等的角有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.五個(gè)人站成前后兩排,前排站兩人、后排站三人的站法種數(shù)為120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知f(x)=ln(${\sqrt{1+{x^2}}$+x)-$\frac{2}{{{2^x}+1}}$+1,a=f(${\frac{ln3}{3}}$),b=f(${\frac{ln5}{5}}$),c=-f(2-π),下列結(jié)論正確的是( 。
A.b>a>cB.c>a>bC.a>b>cD.c>b>a

查看答案和解析>>

同步練習(xí)冊(cè)答案