分析 根據函數(shù)y=Acos(ωx+φ)的圖象變換規(guī)律,得出結論.
解答 解:將函數(shù)y=2cos($\frac{x}{3}$+$\frac{π}{6}$)的圖象向右平移$\frac{π}{2}$個單位,可得函數(shù)y=2cos$\frac{x}{3}$的圖象;
再將所得圖象的所有點的橫坐標縮短到原來的$\frac{1}{2}$倍(縱坐標不變),得到的函數(shù)y=2cos$\frac{2x}{3}$的圖象,
故答案為:y=2cos$\frac{2x}{3}$.
點評 本題主要考查函數(shù)y=Acos(ωx+φ)的圖象變換規(guī)律,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源:2017屆湖北襄陽四中高三七月周考三數(shù)學(文)試卷(解析版) 題型:填空題
如果y=f(x)的定義域為R,對于定義域內的任意x,存在實數(shù)a使得f(x+a)=f(﹣x)成立,則稱此函數(shù)具有“P(a)性質”.給出下列命題:
①函數(shù)y=sinx具有“P(a)性質”;
②若奇函數(shù)y=f(x)具有“P(2)性質”,且f(1)=1,則f(2015)=1;
③若函數(shù)y=f(x)具有“P(4)性質”,圖象關于點(1,0)成中心對稱,且在(﹣1,0)上單調遞減,則y=f(x)在(﹣2,﹣1)上單調遞減,在(1,2)上單調遞增;
④若不恒為零的函數(shù)y=f(x)同時具有“P(0)性質”和“P(3)性質”,函數(shù)y=f(x)是周期函數(shù).
其中正確的是 (寫出所有正確命題的編號).
查看答案和解析>>
科目:高中數(shù)學 來源:2017屆湖北襄陽四中高三七月周考三數(shù)學(文)試卷(解析版) 題型:選擇題
若新高考方案正式實施,甲,乙兩名同學要從政治,歷史,物理,化學四門功課中分別選取兩門功課學習,則他們選擇的兩門功課都不相同的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com