3.設公差為d(d≠0)的等差數(shù)列{an}與公比為q(q>0)的等比數(shù)列{bn}有如下關系:a1=b1=2,a3=b3,ab3=5.
(Ⅰ)求{an}和{bn}的通項公式;
(Ⅱ)記A={a1,a2,a3,…,a20},B={b1,b2,b3,…,b20},C=A∪B,求集合C中的各元素之和.

分析 (I)利用等差數(shù)列與等比數(shù)列的通項公式即可得出;
(Ⅱ)由an=n+1,${b_n}={2^{\frac{n+1}{2}}}$.可得數(shù)列{an}和{bn}的相同項為:2,4,8,16.設等差數(shù)列{an}和等比數(shù)列{bn}的前n項和分別為Sn,Tn.由C=A∪B,可得集合C中的各元素之和=S20+T20-(2+4+8+16).

解答 解:(I)∵公差為d(d≠0)的等差數(shù)列{an}與公比為q(q>0)的等比數(shù)列{bn}滿足:a1=b1=2,a3=b3,ab3=5.
∴$\left\{\begin{array}{l}2+2d=2{q^2}\\ 2+({b_3}-1)d=5\end{array}\right.$,
∴$\left\{\begin{array}{l}1+d={q^2}\\ 2+(2{q^2}-1)=5\end{array}\right.$,
∴2d2+d-3=0得d=1或$d=-\frac{3}{2}$.
又q2=1+d>0,
∴d=1⇒$q=\sqrt{2}$,
∴an=n+1,${b_n}={2^{\frac{n+1}{2}}}$.
(Ⅱ)由an=n+1,${b_n}={2^{\frac{n+1}{2}}}$.
可得數(shù)列{an}和{bn}的相同項為:2,4,8,16.
設等差數(shù)列{an}和等比數(shù)列{bn}的前n項和分別為Sn,Tn
∵C=A∪B,
∴集合C中的各元素之和=S20+T20-(2+4+8+16)
=$\frac{20(2+21)}{2}$+$\frac{2[(\sqrt{2})^{20}-1]}{\sqrt{2}-1}$-30
=230+$2(\sqrt{2}+1)$(210-1)-30
=200+2046$(\sqrt{2}+1)$
=2046$\sqrt{2}$+2246.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知向量$\overrightarrow{m}$=(1,sin(ωx+$\frac{π}{3}$)),$\overrightarrow{n}$=(2,2sin(ωx-$\frac{π}{6}$))(其中ω為正常數(shù)),設f(x)=$\overrightarrow{m}•\overrightarrow{n}$-2,且函數(shù)f(x)的圖象的相鄰兩個對稱中心的距離為$\frac{π}{2}$.
(1)求當$\overrightarrow{m}∥\overrightarrow{n}$時,tanx的值;
(2)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設f(x)=x2+2cosx,x∈R,且f(α)>f(β),則下列結論中成立的是( 。
A.α>βB.α2<β2C.α<βD.α2>β2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.求下列函數(shù)的值域:
(1)y=x2+2x,x∈[0,3];
(2)y=$\frac{x-3}{x+1}$;
(3)y=x-$\sqrt{1-2x}$;
(4)y=log3x+logx3-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)y=sin2x-2cos2x化成正弦型函數(shù)為y=$\sqrt{5}$sin(2x-θ).其中tanθ=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列四個命題中,正確命題的個數(shù)是( 。
①函數(shù)y=1與y=x0不是相等函數(shù);
②f(x)=$\sqrt{x-3}$+$\sqrt{2-x}$是函數(shù);
③函數(shù)y=2x(x∈N)的圖象是一條直線;
④函數(shù)y=$\left\{\begin{array}{l}{{x}^{2},(x≥0)}\\{-{x}^{2},(x<0)}\end{array}\right.$的圖象是拋物線.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.對于任意實數(shù)x不等式ex-ax-b≥0恒成立,則ab的最大值為( 。
A.$\sqrt{e}$B.e2C.eD.$\frac{e}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{x+y≤2}\\{x-y≤0}\end{array}\right.$,則z=(a2+1)x-a2y(a≠0)的大值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設函數(shù)f(x)=x+$\frac{1}{x}$+alnx,g(x)=x+$\frac{1}{x}$+($\frac{1}{x}$-x)lnx,其中a∈R.
(Ⅰ)證明:g(x)=g($\frac{1}{x}$),并求g(x)的最大值;
(Ⅱ)記f(x)的最小值為h(a),證明:函數(shù)y=h(a)有兩個互為相反數(shù)的零點.

查看答案和解析>>

同步練習冊答案