10.從如圖所示的長方形區(qū)域內(nèi)任取一個點M(x,y),則點M取自陰影部分的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

分析 由題意,分別求出長方形和陰影部分的面積,利用幾何概型的公式得到所求.

解答 解:由題意,長方形的面積為3,
陰影部分的面積為${∫}_{0}^{1}3{x}^{2}dx={x}^{3}{|}_{0}^{1}$=1,
由幾何概型的公式得到所求概率為$\frac{1}{3}$;
故選C.

點評 本題考查了幾何概型的概率求法;關(guān)鍵是明確幾何測度為圖形面積.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)$y=\sqrt{{{log}_{0.1}}(2x-1)}$的定義域為($\frac{1}{2},1$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.復數(shù)z滿足|z-4i|-|z+4i|=4,則z在復平面上對應點的軌跡方程為$\frac{{y}^{2}}{4}-\frac{{x}^{2}}{12}=1$(y<0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知p:-1≤x≤1,q:a≤ex≤b,其中a,b為實數(shù).
(1)若p是q的充要條件,求ab的值;
(2)若a=1,b=e2,且p,q中恰有一個為真命題,求實數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.如圖,半徑為1的扇形AOB的圓心角為120°,點C在$\widehat{AB}$上,且∠COA=30°,若$\overrightarrow{OC}$=$λ\overrightarrow{OA}$$+μ\overrightarrow{OB}$,則λ+μ$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.計算i+2i2+3i3+…+2017i2017=1008+1009i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=2x的反函數(shù)為y=g(x),
(Ⅰ)若函數(shù)y=g(4-bx)在[1,+∞)上有最小值為3,求b的值;
(Ⅱ)若函數(shù)y=g(x)的圖象經(jīng)過點(6,a+1),且關(guān)于x的方程2ax-9x-m=0在區(qū)間[-1,1]上有解,求m的取值范圍;
(Ⅲ)若函數(shù)h(x)=9x-k•3x+1(x≤0)有最小值-1,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.計算${∫}_{0}^{1}$(ex+1)dx=( 。
A.2eB.e+1C.eD.e-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知i是虛數(shù)單位,復數(shù)z滿足z-zi=i,則z的共軛復數(shù)$\overline z$=( 。
A.$\frac{1}{2}+\frac{1}{2}$iB.-1-iC.-$\frac{1}{2}-\frac{1}{2}$iD.1+i

查看答案和解析>>

同步練習冊答案