1.若0<x1<x2<1,則下列判斷正確的有③.
①e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$>lnx2-lnx1;②e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$<lnx2-lnx1;③x2e${\;}^{{x}_{1}}$>x1e${\;}^{{x}_{2}}$;④x2e${\;}^{{x}_{1}}$<x1e${\;}^{{x}_{2}}$.

分析 分別構(gòu)造函數(shù)f(x)=ex-lnx,g(x)=$\frac{{e}^{x}}{x}$,利用導(dǎo)數(shù)判斷f(x),g(x)在(0,1)上的單調(diào)性,根據(jù)單調(diào)性即可比較.

解答 解:令f(x)=ex-lnx,g(x)=$\frac{{e}^{x}}{x}$,
∴f′(x)=ex-$\frac{1}{x}$,g′(x)=$\frac{(x-1){e}^{x}}{{x}^{2}}$
∵0<x1<x2<1
∴f′(x)的符號(hào)不確定,g′(x)<0,
∴f(x)在(0,1)上的單調(diào)性有增有減,g(x)在(0,1)上單調(diào)遞減,
∴f(x1)與f(x2)無(wú)法比較大小,g(x1)>g(x2),
∴e${\;}^{{x}_{2}}$-lnx2與e${\;}^{{x}_{1}}$-lnx1無(wú)法比較,$\frac{{e}^{{x}_{1}}}{{x}_{1}}$>$\frac{{e}^{{x}_{2}}}{{x}_{2}}$,
即x2e${\;}^{{x}_{1}}$>x1e${\;}^{{x}_{2}}$,
故答案為:③

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了函數(shù)構(gòu)造法,解答此題的關(guān)鍵在于想到構(gòu)造兩個(gè)函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.不等式$\frac{2}{x}>-3$的解集是$(-∞,-\frac{2}{3})$∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.有一地球儀的半徑為30cm,地球儀上標(biāo)有A、B兩地,A地北緯45°,東經(jīng)40°,B地北緯45°,西經(jīng)50°.
(1)求地球儀的表面積與體積;
(2)求地球儀上A、B兩地所在緯線圈的半徑;
(3)求地球儀上A、B兩點(diǎn)的球面距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知{an}是遞增的等差數(shù)列,a2,a4是方程x2-10x+24=0的根.
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{{a}_{n}}{{2}^{n+1}}$}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖所示,在四棱錐S-ABCD中,底面ABCD是矩形,側(cè)面SDC⊥底面ABCD,求證:平面SCD⊥平面SBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知實(shí)數(shù)a,b滿足2a+1+2b+1=4a+4b,則a+b的取值范圍是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.畫(huà)出函數(shù)y=$\frac{{x}^{2}}{{2}^{x}-1}$的大致圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知點(diǎn)A(-3,0),B(3,0),動(dòng)點(diǎn)P滿足|PA|=2|PB|.
(1)若點(diǎn)P的軌跡為曲線C,求此曲線的方程;
(2)若點(diǎn)Q在直線l1:x+y+3=0上,直線l2經(jīng)過(guò)點(diǎn)Q且與曲線C只有一個(gè)公共點(diǎn)M,求|QM|的最小值,并求此時(shí)直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)兩點(diǎn)M(0,m)和N($\sqrt{3}$m,$\frac{1}{2}$m),(m>0),F(xiàn)1,F(xiàn)2分別為橢圓C的左、右焦點(diǎn).
(1)求橢圓C的離心率;
(2)直線MF2交橢圓C另外一點(diǎn)為E,且四邊形MF1EN的面積為$\frac{10\sqrt{3}}{7}$,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案