20.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x+2,那么不等式2f(x)-1<0的解集是$\left\{{\left.x\right|}\right.\left.{x<-\frac{3}{2}或0≤x<\frac{5}{2}}\right\}$.

分析 求出f(x)的解析式,帶入不等式解出.

解答 解:當(dāng)x>0時(shí),-x<0,
∴f(-x)=-x+2,
∵y=f(x)是奇函數(shù),
∴f(x)=-f(-x)=x-2.
∵y=f(x)是定義在R上的奇函數(shù),
∴f(0)=0.
∴f(x)=$\left\{\begin{array}{l}{x-2,x>0}\\{0,x=0}\\{x+2,x<0}\end{array}\right.$,
(1)當(dāng)x>0時(shí),2(x-2)-1<0,
解得0<x<$\frac{5}{2}$.
(2)當(dāng)x=0時(shí),-1<0,恒成立.
(3)當(dāng)x<0時(shí),2(x+2)-1<0,
解得x<-$\frac{3}{2}$.
綜上所述:2f(x)-1<0的解集是$\left\{{\left.x\right|}\right.\left.{x<-\frac{3}{2}或0≤x<\frac{5}{2}}\right\}$.
故答案為$\left\{{\left.x\right|}\right.\left.{x<-\frac{3}{2}或0≤x<\frac{5}{2}}\right\}$.

點(diǎn)評(píng) 本題考查了函數(shù)單調(diào)性與奇偶性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)計(jì)算:0.064${\;}^{-\frac{1}{3}}$+16${\;}^{\frac{3}{4}}$-0.25${\;}^{\frac{1}{2}}$+2log36-log312;
(2)已知集合A={x|2≤2x≤16},B={x|log3x>1},求A∩B,(∁RB)∪A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知全集U=R,集合A={x|x-a≤0},B={x|x2-3x+2≤0},且A∪∁UB=R,則實(shí)數(shù)a的取值范圍是a≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖:
分組頻數(shù)頻率
[10,15)100.25
[15,20)25n
[20,25)mp
[25,30)20.05
合計(jì)M1
(1)求出表中M、p、m、n的值;
(2)補(bǔ)全頻率分布直方圖;若該校高一學(xué)生有360人,估計(jì)他們參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.直線l:x-2y+5=0與圓C:x2+y2=9相交于A、B兩點(diǎn),點(diǎn)D為圓C上異于A、B的一點(diǎn),則△ABD面積的最大值為6+2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=2-x和函數(shù)$g(x)={log_{\frac{1}{2}}}$x,則函數(shù)f(x)與g(x)的圖象關(guān)于(  )對(duì)稱.
A.x軸B.y軸C.直線y=xD.原點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知全集I={0,1,2,3},集合A={1,2},B={2,3},則A∪(CIB)=(  )
A.{1}B.{2,3}C.{0,1,2}D.{0,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.f(x)為R上奇函數(shù),且x>0時(shí),f(x)=x2-2x,則f(-3)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(x,-6),若$\overrightarrow a$⊥$\overrightarrow b$,則|$\overrightarrow a$+$\overrightarrow b$|=( 。
A.5B.$5\sqrt{2}$C.6D.50

查看答案和解析>>

同步練習(xí)冊(cè)答案