10.已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(x,-6),若$\overrightarrow a$⊥$\overrightarrow b$,則|$\overrightarrow a$+$\overrightarrow b$|=( 。
A.5B.$5\sqrt{2}$C.6D.50

分析 由向量垂直的條件:數(shù)量積為0,可得x=3,再由向量的平方即為模的平方,計算即可得到所求值.

解答 解:向量$\overrightarrow a=({2,1}),\overrightarrow b=({x,-6})$,若$\overrightarrow a⊥\overrightarrow b$,
則$\overrightarrow{a}$•$\overrightarrow$=0,即有2x-6=0,
解得x=3,
則$|{\overrightarrow a+\overrightarrow b}|$=$\sqrt{(\overrightarrow{a}+\overrightarrow)^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow}^{2}+2\overrightarrow{a}•\overrightarrow}$
=$\sqrt{5+45+0}$=5$\sqrt{2}$.
故選:B.

點評 本題考查向量的數(shù)量積的性質和運用,注意運用向量垂直的條件和向量的平方即為模的平方,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=x+2,那么不等式2f(x)-1<0的解集是$\left\{{\left.x\right|}\right.\left.{x<-\frac{3}{2}或0≤x<\frac{5}{2}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.求下列函數(shù)的定義域:
(1)y=$\frac{\sqrt{x-2}}{x+1}$•$\sqrt{x+5}$;      
(2)y=$\frac{\sqrt{x-3}}{|x|-5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知等比數(shù)列{an}各項均為正數(shù),且a1,$\frac{1}{2}$a3,a2成等差數(shù)列,求$\frac{{a}_{3}+{a}_{4}}{{a}_{4}+{a}_{5}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,則不等式xf(x)<0的解集為(-1,0)∪(1,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列命題正確的個數(shù)是( 。
①“在三角形ABC中,若sinA>sinB,則A>B”的否命題是真命題;
②命題p:x≠2或y≠3,命題q:x+y≠5,則p是q的必要不充分條件;
③存在實數(shù)x0,使x02+x0+1<0;
④命題“若m>1,則x2-2x+m=0有實根”的逆否命題是真命題.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)$y={log_{\frac{1}{4}}}({{x^2}-4x-5})$的單調增區(qū)間是(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知冪函數(shù)y=f(x)的圖象過(9,3)點,則$f(\frac{1}{3})$=(  )
A.$\sqrt{3}$B.$\frac{1}{3}$C.$\frac{1}{9}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=$\frac{1}{\sqrt{3}}$sin2x-cos2x取得最大值時,x=kπ+$\frac{5π}{12}$,k∈Z.

查看答案和解析>>

同步練習冊答案