18.關(guān)于函數(shù)f(x)=(2x-$\frac{1}{{2}^{x}}$)•x3和實(shí)數(shù)m、n的下列結(jié)論中正確的是( 。
A.若-3≤m<n,則f(m)<f(n)B.若m<n≤0,則f(m)<f(n)
C.若f(m)<f(n),則m2<n2D.若f(m)<f(n),則m3<n3

分析 觀察本題中的函數(shù),可得出它是一個(gè)偶函數(shù),由于所給的四個(gè)選項(xiàng)都是比較大小的,或者是由函數(shù)值的大小比較自變量的大小關(guān)系的,可先研究函數(shù)在(0,+∞)上的單調(diào)性,再由偶函數(shù)的性質(zhì)得出在R上的單調(diào)性,由函數(shù)的單調(diào)性判斷出正確選項(xiàng).

解答 解:∵函數(shù)f(x)=(2x-$\frac{1}{{2}^{x}}$)•x3,∴f(-x)=(2-x-$\frac{1}{{2}^{-x}}$)•(-x)3=(2x-$\frac{1}{{2}^{x}}$)•x3 =f(x),
∴函數(shù)是一個(gè)偶函數(shù).
又x>0時(shí),f(x)=(2x-$\frac{1}{{2}^{x}}$)•x3 是增函數(shù),且f(x)>0,故f(x)在(0,+∞)上是增函數(shù),在(-∞,0)上是減函數(shù).
由偶函數(shù)的性質(zhì)知,此類函數(shù)的規(guī)律是:自變量離原點(diǎn)越近,函數(shù)值越小,即自變量的絕對(duì)值小,函數(shù)值就小,反之也成立.
考查四個(gè)選項(xiàng),A選項(xiàng)無(wú)法判斷m,n離原點(diǎn)的遠(yuǎn)近,故A不能判定是否正確;
B選項(xiàng)m的絕對(duì)值大,其函數(shù)值也大,故不對(duì);
C選項(xiàng)是正確的,由f(m)<f(n),一定可得出|m|<|n|,即m2<n2
D選項(xiàng),由f(m)<f(n),可得出|m|<|n|,但不能得出m3<n3,故D不成立,
故選:C.

點(diǎn)評(píng) 本題是一個(gè)指數(shù)函數(shù)單調(diào)性的應(yīng)用題,利用其單調(diào)性比較大小,解答本題的關(guān)鍵是觀察出函數(shù)是一個(gè)偶函數(shù),且能判斷出函數(shù)在定義域上的單調(diào)性,最關(guān)鍵的是能由函數(shù)圖象的對(duì)稱性,單調(diào)性轉(zhuǎn)化出自變量的絕對(duì)值小,函數(shù)值就小,反之也成立這個(gè)結(jié)論.本題考查了判斷推理能力,歸納總結(jié)能力,是函數(shù)單調(diào)性與奇偶性綜合中綜合性較強(qiáng)的題,解題中能及時(shí)歸納總結(jié)可以順利求解此類題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.正四棱錐的底面面積為4,高為3,設(shè)它的側(cè)棱與底面所成的角為α,則sinα=$\frac{3\sqrt{11}}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,且離心率為$\frac{1}{2}$,點(diǎn)M為橢圓上一動(dòng)點(diǎn),△F1MF2面積的最大值為$\sqrt{3}$.
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點(diǎn)為A1,過(guò)右焦點(diǎn)F2的直線l與橢圓相交于A,B兩點(diǎn),連結(jié)A1A,A1B并延長(zhǎng)交直線x=4分別于P、Q兩點(diǎn),問(wèn)$\overrightarrow{P{F}_{2}}$•$\overrightarrow{Q{F}_{2}}$是否為定值?若是,求出此定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知x3+sinx=m,y3+siny=-m,且x,y∈(-$\frac{π}{4},\frac{π}{4}$),m∈R,則tan(x+y+$\frac{π}{3}$)=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在一次對(duì)由42名學(xué)生參加的課外籃球、排球興趣小組(每人參加且只參加一個(gè)興趣小組)情況調(diào)查中,經(jīng)統(tǒng)計(jì)得到如下2×2列聯(lián)表:(單位:人)
籃球排球總計(jì)
男同學(xué)16622
女同學(xué)81220
總計(jì)241842
(1)據(jù)此判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為參加“籃球小組”或“排球小組”與性別有關(guān)?
(2)在統(tǒng)計(jì)結(jié)果中,按性別用分層抽樣的方法抽取7名同學(xué)進(jìn)行座談,甲、乙兩名女同學(xué)中被抽中的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
下面是臨界值表供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
參考公式:k2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.定理:若x∈(0,$\frac{π}{2}$),則sinx<x,設(shè)a,b,c∈(0,$\frac{π}{2}$),其中,a是函數(shù)y=x與y=cosx圖象交點(diǎn)橫坐標(biāo),b=sin(cosb),c=cos(sinc),則a,b,c的大小關(guān)系是(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.己知集合A={x|x2+(2+a)x+1=0}.
(1)設(shè)集合B={x|x2-x-2=0},若A∩B=A,求實(shí)數(shù)a的取值范圍.
(2)設(shè)集合c={x|x>0},試問(wèn)是否存在實(shí)數(shù)a,使得A∩C=∅?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=$\sqrt{4-|x|}$+$\sqrt{\frac{x-3}{{x}^{2}-5x+6}}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|2<x<3}B.{x|2<x≤4}C.{x|2<x≤4且x≠3}D.{x|-1<x≤6且x≠3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知全集U=R,集合A={x|x2-4x+3≥0},B={x|2k<x<k+1}.
(1)若A⊆∁UB,求實(shí)數(shù)k的取值范圍;
(2)若(∁UA)∩B≠∅,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案