A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 相似三角形的面積比等于對應邊之比的平方,所以可先利用△EFC∽△ADE,得出對應線段的比,進而得出面積比,最后求出面積的值.
解答 解:∵DE∥BC,EF∥AB,
∴∠C=∠AED,∠FEC=∠A,
∴△EFC∽△ADE,
而S△ADE=1,S△EFC=4,
∴$\frac{AE}{EC}$=$\frac{1}{2}$
∴$\frac{AE}{AC}$=$\frac{1}{3}$,
∴$\frac{{S}_{△ADE}}{{S}_{△ABC}}$=$\frac{1}{9}$,
∴△ABC的面積是9,
∴四邊形BFED的面積=9-5=4.
故選:C.
點評 本題主要考查了相似的判定與性質的綜合應用,熟練掌握平行線分線段成比例的性質,理解相似三角形的面積比等于對應邊長的平方比是解答本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | AE=AD | B. | ∠AEB=∠ADC | C. | CE=BD | D. | AB=AC |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com