12.設(shè)集合A={x|(x-3)(1-x)>0},B={x|y=lg(2x-3)},則A∩B=(  )
A.(3,+∞)B.[$\frac{3}{2}$,3)C.(1,$\frac{3}{2}$)D.($\frac{3}{2}$,3)

分析 求出A中不等式的解集確定出A,求出B中函數(shù)的定義域確定出B,找出兩集合的交集即可.

解答 解:由A中不等式變形得:(x-3)(x-1)<0,
解得:1<x<3,即A=(1,3),
由B中y=lg(2x-3),得到2x-3>0,
解得:x>$\frac{3}{2}$,即B=($\frac{3}{2}$,+∞),
則A∩B=($\frac{3}{2}$,3),
故選:D.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知f(x)=5°x+20°,g(x)=$\frac{π}{30}$x+$\frac{π}{6}$,若f(x+T)與f(x)終邊相同,g(x+T)與g(x)終邊也相同,求非零常數(shù)T的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{tx+b}{{c{x^2}+1}}$(t,b,c為常數(shù),t≠0).
(Ⅰ)若c=0時(shí),數(shù)列{an}滿足條件:點(diǎn)(n,an)在函數(shù)y=f(x)的圖象上,求{an}的前n項(xiàng)和Sn;
(Ⅱ)在(Ⅰ)的條件下,若a3=7,S4=24,p,q∈N*(p≠q),證明:Sp+q<$\frac{1}{2}$(S2p+S2q).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知點(diǎn)A(1,2),B(-1,3),C(2,1),則$\overrightarrow{AB}$•(2$\overrightarrow{AC}$+$\overrightarrow{BC}$)=-14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)向量$\overrightarrow{a}$=(x-1,2),$\overrightarrow$=(1,x),且$\overrightarrow{a}$⊥$\overrightarrow$,則x=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在區(qū)間(0,1)中隨機(jī)地取出兩個(gè)數(shù),則兩數(shù)之和大于$\frac{5}{6}$的概率是$\frac{47}{72}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左右焦點(diǎn)是F1,F(xiàn)2雙曲線上存在點(diǎn)P使離心率$e=\frac{{sin∠P{F_2}{F_1}}}{{sin∠P{F_1}{F_2}}}$,則離心率e的取值范圍是(1,$\sqrt{2}$+1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.△ABC中,a、b、c分別是三內(nèi)角A、B、C的對(duì)邊,若$\overrightarrow{AB}•\overrightarrow{AC}=\overrightarrow{BA}•\overrightarrow{BC}$=1.解答下列問(wèn)題:
(1)求證:A=B;
(2)求c的值;
(3)若$|\overrightarrow{AB}+\overrightarrow{AC}|=\sqrt{6}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)f(x)=sin2x+cos2x的最小正周期為π,單調(diào)增區(qū)間為$[{kπ-\frac{3π}{8},kπ+\frac{π}{8}}],k∈Z$.

查看答案和解析>>

同步練習(xí)冊(cè)答案