分析 若a∈S,則必有7-a∈S,有1必有6,有2必有5,有3必有4,然后利用列舉法列出所求可能即可;針對(duì)n是否為奇數(shù)和偶數(shù)進(jìn)行討論,分為奇數(shù)和偶數(shù),然后,根據(jù)集合之間的關(guān)系進(jìn)行求解即可.
解答 解:∵非空集合S⊆{1,2,3,4,5,6},且若a∈S,則必有7-a∈S,
那么滿足上述條件的集合S可能為:{1,6},{2,5},{3,4},{1,6,2,5},{1,6,3,4},{2,5,3,4},{1,2,3,4,5,6},共7個(gè);
若n為偶數(shù),則集合{1,2,3,…,n}的元素個(gè)數(shù)為奇數(shù)個(gè),
因?yàn)閍∈A,則n+1-a∈A,
所以從集合{1,2,3,…,n}中取出兩數(shù),使得其和為n+1,這樣的數(shù)共有$\frac{n}{2}$對(duì),所以此時(shí)集合M的個(gè)數(shù)有${2^{\frac{n}{2}}}-1$個(gè),
若n為奇數(shù),則單獨(dú)取出中間的那個(gè)數(shù),所以此時(shí)集合M的個(gè)數(shù)為${2^{\frac{n+1}{2}}}-1$個(gè).
故答案為:7;已知非空集合A⊆{1,2,…,n}滿足:若a∈A,則必有n+1-a∈A;當(dāng)n為偶數(shù)時(shí),這樣的集合A有${2^{\frac{n}{2}}}-1$個(gè);當(dāng)n為奇數(shù)時(shí),這樣的集合A有${2^{\frac{n+1}{2}}}-1$個(gè)
點(diǎn)評(píng) 本題主要考查了子集的定義,以及集合的限制條件下求滿足條件的集合,考查集合的元素特征,集合與集合之間的關(guān)系,元素與集合的關(guān)系等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\frac{1}{3},1})$ | B. | $({-∞,\frac{1}{3}})∪({1,+∞})$ | C. | (-$\frac{1}{3}$,$\frac{1}{3}$) | D. | $({-∞,-\frac{1}{3}})∪({\frac{1}{3},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {4} | B. | {3,5,7,8} | C. | {3,4,5,7,8} | D. | {3,4,4,5,7,8} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com