8.已知函數(shù)f(x)是定義在R上的減函數(shù),如果f(a)>f(x+1)在x∈[1,2]上恒成立,那么實數(shù)a的取值范圍是a<2.

分析 根據(jù)函數(shù)的單調(diào)性可得a<x+1在x∈[1,2]上恒成立,只需求出x+1的最小值即可.

解答 解:f(a)>f(x+1)在x∈[1,2]上恒成立,
∵函數(shù)f(x)是定義在R上的減函數(shù),
∴a<x+1在x∈[1,2]上恒成立,
∴a<2.
故答案為a<2.

點評 本題考查了恒成立問題的轉化和單調(diào)性的利用,屬于常規(guī)題型,應熟練掌握.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知△ABC的頂點為A(2,2),B(5,0),C(0,0),判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.求函數(shù)f(x)=$\frac{-3{x}^{4}+2{x}^{2}-5}{{x}^{3}}$的導數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\sqrt{3}$sinωxcosωx+sin2ωx(ω>0)的最小正周期為π,將函數(shù)f(x)的圖象向右平移φ(φ>0)個單位后,得到的函數(shù)關于點(-$\frac{π}{4}$,$\frac{1}{2}$)對稱,則φ的值不可能為( 。
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{5π}{3}$D.$\frac{7π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知b,c∈R,二次函數(shù)f(x)=x2+bx+c.
(I)對任意的實數(shù)c,存在x0∈[-1,2],使得|f(x0)|≥5,求正數(shù)b的取值范圍;
(2)若f(x)在(0,1)上與x軸有兩個不同的交點,求c2+(1+b)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=alnx+$\frac{1}{x}$(a≠0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若{x|f(x)<0}⊆(0,e${\;}^{-\frac{1}{2}}$),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知圓C與兩平行線5x+2$\sqrt{2}$y+3=0和5x+2$\sqrt{2}$y-63=0都相切,且圓心在x軸上.
(Ⅰ)求圓C的方程;
(Ⅱ)若過原點的動直線l與圓C相交于不同的兩點A,B,求線段AB的中點M的軌跡C1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知拋物線y2=ax上一點M(4,b)到焦點的距離為6.
(Ⅰ)求拋物線的方程;
(Ⅱ)若此拋物線與直線y=kx-2交于不同的兩點A、B,且AB中點的橫坐標為2,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知變量x與y負相關,且由觀測數(shù)據(jù)算得樣本平均數(shù)$\overline{x}$=4,$\overline{y}$=2.5,則由該觀測數(shù)據(jù)算得的線性回歸方程可能是(  )
A.$\widehat{y}$=0.4x+0.9B.$\widehat{y}$=2x-5.5C.$\widehat{y}$=-2x+10.5D.$\widehat{y}$=-0.3x+4.7

查看答案和解析>>

同步練習冊答案