3.設(shè)$f(x)=\left\{\begin{array}{l}{(\frac{1}{4})^{2-x}},x≤1\\{log_9}x,x>1\end{array}\right.$,若$f(a)=\frac{1}{2}$,則a=3.

分析 分別令${(\frac{1}{4})}^{2-x}$=$\frac{1}{2}$,log9x=$\frac{1}{2}$,求出x的值即可.

解答 解:由${(\frac{1}{4})}^{2-a}$=$\frac{1}{2}$,得:2a-4=-1,解得:a=$\frac{3}{2}$(舍),
由log9a=$\frac{1}{2}$,解得:a=3,
故答案為:3.

點評 本題考查了指數(shù)函數(shù)以及對數(shù)函數(shù)的性質(zhì)以及運算,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)已知數(shù)列{an}的各項均為正數(shù),${b_n}=n{({1+\frac{1}{n}})^n}•{a_n}({n∈{N_+}})$,計算$\frac{b_1}{a_1}$,$\frac{{{b_1}{b_2}}}{{{a_1}{a_2}}}$,$\frac{{{b_1}{b_2}{b_3}}}{{{a_1}{a_2}{a_3}}}$,由此推測計算$\frac{{{b_1}{b_2}…{b_n}}}{{{a_1}{a_2}…{a_n}}}$的公式,并給出證明.
(2)求證:$\frac{1}{n+1}$+$\frac{1}{n+2}$+…$\frac{1}{3n}$>$\frac{5}{6}$(n≥2,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知${(2x-3)^5}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}+{a_5}{x^5}$,則a1+2a2+3a3+4a4+5a5=160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知f(x)=2x3-6x2+m(m為常數(shù))在[1,3]上有最小值為2,那么此函數(shù)在[1,3]的最大值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)=ax+b-1,若a,b都是從區(qū)間[0,2]上任取的一個數(shù),則f(2)<0成立的概率為$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.正方形ABCD的邊長為2,向正方形ABCD內(nèi)投擲200個點,有30個落入圖形M中,則圖形M的面積估計為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若a+bi=i2,其中a、b∈R,i為虛數(shù)單位,則a+b=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列說法正確的是( 。
A.存在x0∈R,使得$1-{cos^3}{x_0}={log_2}\frac{1}{10}$
B.函數(shù)y=sin2xcos2x的最小正周期為π
C.函數(shù)$y=cos2({x+\frac{π}{3}})$的一個對稱中心為$({-\frac{π}{3},0})$
D.角α的終邊經(jīng)過點(cos(-3),sin(-3)),則角α是第三象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)$f(x)=2alnx+\frac{lnx}{x}$.
(Ⅰ)若$a=-\frac{1}{2}$,求f(x)的極值;
(Ⅱ)若f(x)在定義域上單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案