分析 由題意,$θ=\frac{π}{2}$是方程的解,判斷函數(shù)y=cosθ-lnsinθ在($\frac{π}{2}$,π)上有一個(gè)零點(diǎn),即可得出結(jié)論.
解答 解:由題意,$θ=\frac{π}{2}$是方程的解
設(shè)y=cosθ-lnsinθ,(θ∈($\frac{π}{2}$,π)),
則y′=-sinθ-$\frac{cosθ}{sinθ}$,
由y′>0,可得arccos$\frac{1-\sqrt{5}}{2}$<θ<π,由y′<0,可得$\frac{π}{2}$<θ<arccos$\frac{1-\sqrt{5}}{2}$
θ=arccos$\frac{1-\sqrt{5}}{2}$時(shí),cosθ-lnsinθ<0,θ→π時(shí),cosθ-lnsinθ→+∞,
∴函數(shù)在($\frac{π}{2}$,π)上有一個(gè)零點(diǎn)
綜上所述,函數(shù)有兩個(gè)零點(diǎn),
所以關(guān)于θ的方程cosθ=lnsinθ,(θ∈(0,π))的解的個(gè)數(shù)為2.
故答案為2.
點(diǎn)評(píng) 本題考查方程解的研究,考查數(shù)形結(jié)合的數(shù)學(xué)思想,正確轉(zhuǎn)化是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,+∞) | B. | (-∞,-6] | C. | [-6,2] | D. | (-∞,-6]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com