【題目】海關(guān)對(duì)同時(shí)從三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測(cè),從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如下表所示,工作人員用分層抽樣的方法從這些商品中共抽取6件進(jìn)行檢測(cè).
地區(qū) | |||
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來(lái)自各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)一步檢測(cè),求這2件商品來(lái)自相同地區(qū)的概率.
【答案】(1)三個(gè)地區(qū)的商品被選取的件數(shù)分別為1,3,2;(2).
【解析】試題分析:(1)首先確定樣本容量與總體中的個(gè)數(shù)的比是,
從而得到樣本中包含三個(gè)地區(qū)的個(gè)體數(shù)量分別是:
, , .
(2)設(shè)6件來(lái)自A,B,C三個(gè)地區(qū)的樣品分別為,
寫(xiě)出抽取的這2件商品構(gòu)成的所有基本事件:
, ,
,
,共15個(gè).
記事件D:“抽取的這2件商品來(lái)自相同地區(qū)”,
寫(xiě)出事件D包含的基本事件:
共4個(gè).
由每個(gè)樣品被抽到的機(jī)會(huì)均等,因此這些基本事件的出現(xiàn)是等可能的,
利用古典概型概率的計(jì)算公式得解.
試題解析:(1)因?yàn)闃颖救萘颗c總體中的個(gè)數(shù)的比是,
所以樣本中包含三個(gè)地區(qū)的個(gè)體數(shù)量分別是:
, , ,
所以A,B,C三個(gè)地區(qū)的商品被選取的件數(shù)分別為1,3,2.
(2)設(shè)6件來(lái)自A,B,C三個(gè)地區(qū)的樣品分別為,
則抽取的這2件商品構(gòu)成的所有基本事件為:
, ,
,
,共15個(gè).
每個(gè)樣品被抽到的機(jī)會(huì)均等,因此這些基本事件的出現(xiàn)是等可能的,
記事件D:“抽取的這2件商品來(lái)自相同地區(qū)”,
則事件D包含的基本事件有:
共4個(gè).
所有,即這2件商品來(lái)自相同地區(qū)的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, , .
(1)若是的充分不必要條件,求實(shí)數(shù)的取值范圍;
(2)若,“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2﹣12x﹣14y+60=0及其上一點(diǎn)A(2,4).
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線l的方程;
(3)設(shè)點(diǎn)T(t,0)滿足:存在圓M上的兩點(diǎn)P和Q,使得 ,求實(shí)數(shù)t的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面平面,四邊形和是全等的等腰梯形,其中,且,點(diǎn)為的中點(diǎn),點(diǎn)是的中點(diǎn).
(I)請(qǐng)?jiān)趫D中所給的點(diǎn)中找出兩個(gè)點(diǎn),使得這兩個(gè)點(diǎn)所在直線與平面垂直,并給出證明;
(II)求二面角的余弦值;
(III)在線段上是否存在點(diǎn),使得平面?如果存在,求出的長(zhǎng)度,如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=2,前3項(xiàng)和為S3=.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)等比數(shù)列{bn}滿足b1=a1,b4=a15,求{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線方程C:.
(1)當(dāng)時(shí),求圓心和半徑;
(2)若曲線C表示的圓與直線l: 相交于M,N,且,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(其中,,)的圖象的兩條相鄰對(duì)稱軸之間的距離為,且圖象上一個(gè)最低點(diǎn)為.
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí),求函數(shù)的值域;
(3)若方程在上有兩個(gè)不相等的實(shí)數(shù)根,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)同時(shí)滿足以下三個(gè)條件:
①對(duì)任意的,總有;
②;
③若,且,則有成立,則稱為“友誼函數(shù)”.
()若已知為“友誼函數(shù)”,求的值.
()分別判斷函數(shù)與在區(qū)間上是否為“友誼函數(shù)”,并給出理由.
()已知為“友誼函數(shù)”,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足cos2B﹣cos2C﹣sin2A=sinAsimB.
(1)求角C;
(2)向量 =(sinA,cosB), =(cosx,sinx),若函數(shù)f(x)= 的圖象關(guān)于直線x= 對(duì)稱,求角A,B.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com