3.執(zhí)行如圖所示的程序框圖,若輸出的T=20,則循環(huán)體的判斷框內(nèi)應(yīng)填入的條件是(填相應(yīng)編號)②.
(①T≥S;②T>S;③T≤S;④T<S)

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知該程序的作用是累加并輸出T的值,條件框內(nèi)的語句是決定是否結(jié)束循環(huán),模擬執(zhí)行程序即可得到答案.

解答 解:模擬程序的運行,可得
S=0,T=0,n=0
不滿足條件,執(zhí)行循環(huán)體,S=4,n=2,T=2
不滿足條件,執(zhí)行循環(huán)體,S=8,n=4,T=6
不滿足條件,執(zhí)行循環(huán)體,S=12,n=6,T=12
不滿足條件,執(zhí)行循環(huán)體,S=16,n=8,T=20
由題意,此時應(yīng)該滿足條件,推出循環(huán)輸出T的值為20.
則循環(huán)體的判斷框內(nèi)應(yīng)填入的條件是:T>S?
故答案為:②.

點評 算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個熱點,應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導(dǎo)致錯誤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,DE=3.
(Ⅰ)求證:AB∥平面CDE;
(Ⅱ)求證:平面ACE⊥平面CDE;
(Ⅲ)求三棱錐E-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)=|2x-3|,則不等式f(x)<5的解集為(-1,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若橢圓C與直線y=x+m交于M,N兩點,且|MN|=$\frac{{12\sqrt{2}}}{7}$,求m的值;
(Ⅲ)若點A(x1,y1)與點P(x2,y2)在橢圓C上,且點A在第一象限,點P在第二象限,點B與點A關(guān)于原點對稱,求證:當x12+x22=4時,三角形△PAB的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點為Q,O為坐標原點,過OQ的中點作x軸的垂線與橢圓在第一象限交于點A,點A的縱坐標為$\frac{3}{2}$c,c為半焦距.
(1)求橢圓的離心率;
(2)過點A斜率為$\frac{1}{2}$的直線l與橢圓交于另一點B,以AB為直徑的圓過點P($\frac{1}{2}$,$\frac{9}{2}$),求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.2015年,威海智慧公交建設(shè)項目已經(jīng)基本完成.為了解市民對該項目的滿意度,分別從不同公交站點隨機抽取若干市民對該項目進行評分(滿分100分),繪制如下頻率分布直方圖,并將分數(shù)從低到高分為四個等級:
滿意度評分低于60分60分到79分80分到89分不低于90分
滿意度等級不滿意基本滿意滿意非常滿意
已知滿意度等級為基本滿意的有680人.
(I)求等級為非常滿意的人數(shù):
(Ⅱ)現(xiàn)從等級為不滿意市民中按評分分層抽取6人了解不滿意的原因,并從中選取3人擔(dān)任整改監(jiān)督員,求3人中恰有1人評分在[40,50)的概率;
(Ⅲ)相關(guān)部門對項目進行驗收,驗收的硬性指標是:市民對該項目的滿意指數(shù)不低于0.8,否則該項目需進行整改,根據(jù)你所學(xué)的統(tǒng)計知識,判斷該項目能否通過驗收,并說明理由.(注:滿意指數(shù)=$\frac{滿意程度的平均分}{100}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.($\frac{i-1}{i+1}$)2016的共軛復(fù)數(shù)為( 。
A.-1B.1C.1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sin(2ωx-$\frac{π}{6}}$)-4sin2ωx(ω>0),其圖象相鄰的兩個對稱中心之間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{3}$個單位,得到函數(shù)g(x)的圖象,試討論g(x)在[-$\frac{π}{6}$,$\frac{π}{2}}$]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某旅行社租用A,B兩種型號的客車安排900名客人旅行,A,B兩種車輛的載客量分別為36人和60人,租金分別為1600元/輛和2400元/輛,旅行社要求租車總數(shù)不超過21輛,且B型車不多于A型車7輛.則租金最少為多少元?

查看答案和解析>>

同步練習(xí)冊答案