12.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,四邊形ABCD是直角梯形,∠BAD=∠ADC=90°,E為CB的中點(diǎn),AB=PA=AD=2CD,則PA與平面PDE所成的角的正弦值為( 。
A.$\frac{\sqrt{22}}{22}$B.$\frac{\sqrt{22}}{11}$C.$\frac{3\sqrt{22}}{22}$D.$\frac{2\sqrt{22}}{11}$

分析 以A為原點(diǎn),AD、AB、AP所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能求出PA與平面PDE所成的角的正弦值.

解答 解:以A為原點(diǎn),AD、AB、AP所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,
則P(0,0,2),D(2,0,0),B(2,1,0),E(1,$\frac{3}{2}$,0),A(0,0,0),
$\overrightarrow{AP}$=(0,0,2),$\overrightarrow{DP}$=(-2,0,2),$\overrightarrow{DE}$=(-1,$\frac{3}{2}$,0),
設(shè)平面PDE的一個(gè)法向量為$\overrightarrow{n}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DP}=-2a+2c=0}\\{\overrightarrow{n}•\overrightarrow{DE}=-a+\frac{3}{2}b=0}\end{array}\right.$,取a=3,得$\overrightarrow{n}$=(3,2,3),
設(shè)PA與平面PDE所成的角為θ,
sinθ=$\frac{|\overrightarrow{AP}•\overrightarrow{n}|}{|\overrightarrow{AP}|•|\overrightarrow{n}|}$=$\frac{6}{2×\sqrt{22}}$=$\frac{3\sqrt{22}}{22}$
∴PA與平面PDE所成的角的正弦值為$\frac{3\sqrt{22}}{22}$.
故選:C.

點(diǎn)評(píng) 本題考查線面角的正弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=|x2-4x+3|-m有四個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.為了解某地臍橙種植情況,調(diào)研小組在該地某臍橙種植園中隨機(jī)抽出30棵,每棵掛果情況編成如圖所示的莖葉圖(單位:個(gè)):若掛果在175個(gè)以上(包括175)定義為“高產(chǎn)”,掛果在175個(gè)以下(不包括175)定義為“非高產(chǎn)”.
(1)如果用分層抽樣的方法從“高產(chǎn)”和“非高產(chǎn)”中抽取5棵,再?gòu)倪@5棵中選2棵,那么至少有一棵是“高產(chǎn)”的概率是多少?
(2)用樣本估計(jì)總體,若從該地所有臍橙果樹(shù)(有較多果樹(shù))中選3棵,用ξ表示所選3棵中“高產(chǎn)”的個(gè)數(shù),試寫(xiě)出ξ的分布列,并求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.曲線y=$\frac{lnx}{x}$在點(diǎn)(1,0)處的切線是y=x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.命題“?x∈R,sinx+cosx≤$\sqrt{2}$”的否定是(  )
A.?x∈R,sinx+cosx>$\sqrt{2}$B.?x∈R,sinx+cosx≤$\sqrt{2}$
C.?x∈R,sinx+cosx≥$\sqrt{2}$D.?x∈R,sinx+cosx>$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)a=20.4,b=30.75,c=log3$\frac{1}{3}$,則( 。
A.a>b>cB.b>a>cC.c>b>aD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.平行六面體ABCD-A′B′C′D′,O為A1C與B1D的交點(diǎn),則$\frac{1}{3}$($\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{A{A}_{1}}$)=$\frac{2}{3}$$\overrightarrow{AO}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖是一個(gè)幾何體的三視圖,則在此幾何體中,直角三角形的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.過(guò)點(diǎn)(-1,0)與拋物線y=x2-1只有一個(gè)公共點(diǎn)的直線有( 。
A.3條B.2條C.1條D.0條

查看答案和解析>>

同步練習(xí)冊(cè)答案