解答:
解:①由題意得,若x>0時(shí),則-x<0,g(x)為f(x)在R上的一個(gè)延拓函數(shù),且g(x)是奇函數(shù),
則g(x)=f(x)=e
x(x+1)(x<0),
∴g(-x)=e
-x(-x+1)=-g(x),
∴g(x)=e
-x(x-1),(x>0),故①正確;
②∵g(x)=e
x(x+1)(x<0),此時(shí)g′(x)=e
x(x+2),令其等于0,解得x=-2,
且當(dāng)x∈(-∞,-2)上導(dǎo)數(shù)小于0,函數(shù)單調(diào)遞減;
當(dāng)x∈(-2,0)上導(dǎo)數(shù)大于0,函數(shù)單調(diào)遞增,
x=-2處為極小值點(diǎn),且g(-2)>-1,
且在x=-1處函數(shù)值為0,且當(dāng)x<-1是函數(shù)值為負(fù).
又∵奇函數(shù)的圖象關(guān)于原點(diǎn)中心對稱,故函數(shù)f(x)的圖象應(yīng)如圖所示:
由圖象可知:函數(shù)g(x)有3個(gè)零點(diǎn),故②錯(cuò)誤;
③由②知函數(shù)g(x)>0的解集為(-1,0)∪(1,+∞),故③正確,;
④由②知函數(shù)在x=-2處取得極小值,極小值為g(-2)=e
-2(-2+1)=-e
-2,
根據(jù)奇函數(shù)的對稱性可知在x=2處取得極大值,極大值為g(2)=e
-2,故④錯(cuò)誤;
⑤當(dāng)x<0時(shí),g(x)=e
x(x+1),則當(dāng)x→0時(shí),g(x)→1,
當(dāng)x>0時(shí),g(x)=e
-x(x-1),則當(dāng)x→0時(shí),g(x)→-1,
即當(dāng)x<0時(shí),-1<-e
-2<g(x)<1,
即當(dāng)x>0時(shí),-1<g(x)<e
-2<1,
故有對?x
1,x
2∈R,|g(x
2)-g(x
1)|<2恒成立,即⑤正確.
故正確的命題是①③⑤,
故答案為:①③⑤