A. | 3019×22012 | B. | 3019×22013 | C. | 3018×22012 | D. | 無法確定 |
分析 由已知得a2=3a1+2=5,a1+a2+…+an+1=4an+2,a1+a2+…+an=4an-1+2,兩式相減得到{an-2an-1}是等比數列,公比q=2,從而得到{$\frac{{a}_{n}}{{2}^{n}}$}是等差數列,公差d=$\frac{3}{4}$,n≥2,由此求出an=(3n-1)•2n-2,從而能求出結果.
解答 解:∵在數列{an}中,a1=1,Sn+1=4an+2,
∴S2=4a1+2=a1+a2,∴a2=3a1+2=5,
a1+a2+…+an+1=4an+2,①
a1+a2+…+an=4an-1+2,②
①-②,得:an+1=4an-4an-1,
an+1-2an=2(an-2an-1),
∴{an-2an-1}是等比數列,公比q=2,
an-2an-1=2n-2•(a2-2a1)=3•2n-2,
∴$\frac{{a}_{n}}{{2}^{n}}$-$\frac{{a}_{n-1}}{{2}^{n-1}}$=$\frac{3}{4}$,
∴{$\frac{{a}_{n}}{{2}^{n}}$}是等差數列,公差d=$\frac{3}{4}$,n≥2,
∴$\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{2}}{{2}^{2}}$=$\frac{3(n-2)}{4}$,
∴$\frac{{a}_{n}}{{2}^{n}}$=$\frac{3n-1}{4}$,∴an=(3n-1)•2n-2,
∴a2013=(3×2013-1)•22011=3019×22012.
故選:A.
點評 本題考查數列的第2013項的求法,是中檔題,解題時要認真審題,注意遞推公式和構造法的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 16 | B. | 18 | C. | 21 | D. | 26 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $ω=\frac{1}{2}$,φ=$\frac{π}{4}$ | B. | ω=2,φ=$\frac{π}{4}$ | C. | $ω=\frac{1}{2}$,φ=$\frac{π}{2}$ | D. | ω=2,φ=$\frac{π}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com