14.如圖所示,在四棱柱P-ABCD中,底面ABCD是菱形,∠DAB=60°,側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD,
(1)求證:AD⊥PB;
(2)若E為BC的中點(diǎn),能否在棱PC上找到一點(diǎn)F,使平面DEF⊥平面ABCD,并證明你的結(jié)論.

分析 (1)取G為AD邊的中點(diǎn),連接PG,證明PG⊥AD,BG⊥AD,即可證明AD⊥平面PGB,然后證明AD⊥PB.
(2)當(dāng)F為PC邊的中點(diǎn)時(shí),滿足平面DEF⊥平面ABCD,證明如下:取PC的中點(diǎn)F,連接DE、EF、DF,通過(guò)證明BG⊥PG,PG⊥AD,AD∩BG=G,PG⊥平面ABCD,即可證明平面DEF⊥平面ABCD.

解答 (2)證明:取G為AD邊的中點(diǎn),連接PG,
因?yàn)椤鱌AD為正三角形,G為AD邊的中點(diǎn),
所以PG⊥AD,
在底面菱形ABCD中,∠DAB=60°,G為AD邊的中點(diǎn),所以BG⊥AD,
因?yàn)镻G?平面PGB,BG?平面PGB,PG∩BG=G,
所以AD⊥平面PGB,因?yàn)镻B?平面PGB.
所以AD⊥PB.
(3)解:當(dāng)F為PC邊的中點(diǎn)時(shí),滿足平面DEF⊥平面ABCD,證明如下:
取PC 的中點(diǎn)F,連接DE、EF、DF,
在△PBC中,F(xiàn)E∥PB,在菱形ABCD中,GB∥DE,
EF∩DE=E,所以平面DEF∥平面PGB,因?yàn)锽G⊥平面PAD,所以BG⊥PG,又因?yàn)镻G⊥AD,AD∩BG=G,
所以PG⊥平面ABCD,而PG?平面PGB,
所以平面PGB⊥平面ABCD,
所以平面DEF⊥平面ABCD.

點(diǎn)評(píng) 本題考查直線與平面垂直,平面與平面垂直的證明,考查空間想象能力,邏輯推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知A,B,C三點(diǎn)的坐標(biāo)分別是$A(3,0),B(0,3),C(cosα,sinα),α∈(\frac{π}{2},\frac{3π}{2})$,若$\overrightarrow{AC}•\overrightarrow{BC}=-1$,則$\frac{1+tanα}{{2{{sin}^2}α+sin2α}}$=-$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知p是q的必要不充分條件,m是n的充要條件,p是n的充分不必要條件,求q與m的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)y=f(x)=$\frac{1}{\sqrt{x}}$,求f′(x),f′(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,四棱柱P-ABCD中,底面ABCD是菱形,AC∩BD=O,側(cè)棱PA⊥平面ABCD,E是PA的中點(diǎn).
(1)求證:PC∥平面BED;
(2)求證:PC⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若不等式a+a(a-1)i<1+ai成立,則實(shí)數(shù)a為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若x>0,$\frac{x}{5}$$+\frac{45}{x}$的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=lnx+$\frac{a+2}{x}$,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=ex+ax.
(I)若f(x)在x=0處的切線過(guò)點(diǎn)(2,-1),求a的值;
(Ⅱ)討論函數(shù)f(x)在(1,+∞)上的單調(diào)性;
(Ⅲ)令a=1,F(xiàn)(x)=xf(x)-x2,若F(x1)=F(x2)(x1≠x2),證明:x1+x2<-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案