A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既非充分又非必要條件 |
分析 根據(jù)充分條件和必要條件的定義結(jié)合復(fù)數(shù)的有關(guān)概念進(jìn)行判斷即可.
解答 解:若z1、z2均為實(shí)數(shù),則z1-z2是實(shí)數(shù),即充分性成立,
當(dāng)z1=i,z2=i,滿足z1-z2=0是實(shí)數(shù),但z1、z2均為實(shí)數(shù)不成立,即必要性不成立,
故“z1、z2均為實(shí)數(shù)”是“z1-z2是實(shí)數(shù)”的充分不必要條件,
故選:A.
點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)復(fù)數(shù)的有關(guān)概念是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 4 | D. | 2m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 偶函數(shù),且單調(diào)遞增 | B. | 偶函數(shù),且單調(diào)遞減 | ||
C. | 奇函數(shù),且單調(diào)遞增 | D. | 奇函數(shù),且單調(diào)遞減 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{5π}{12}$ | C. | $\frac{7π}{12}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在△ABC中,角A,B所對(duì)邊分別為a,b則sinA>sinB成立的充要條件是a>b | |||||||||
B. | 若命題p:?x∈(0,+∞),sinx-x<0,命題q:?x0∈(0,+∞),e${\;}^{{x}_{0}}$<0,則p∧¬q為真命題 | |||||||||
C. | 若$\overrightarrow{a}$∥$\overrightarrow$,則存在唯一的實(shí)數(shù)λ,使$\overrightarrow{a}$=λ$\overrightarrow$ | |||||||||
D. | 在一個(gè)2×2列聯(lián)表中,由計(jì)算得k2=6.721,則有99%的把握確認(rèn)這兩個(gè)變量間有關(guān)系;可以參考獨(dú)立性檢驗(yàn)臨界表
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com