分析 由y=tanx的單調(diào)遞增區(qū)間為(kπ-$\frac{π}{2}$,kπ+$\frac{π}{2}$)(k∈Z),要求$y=2tan({2x+\frac{π}{4}})$的單調(diào)遞增區(qū)間,由2x+$\frac{π}{4}$∈(kπ-$\frac{π}{2}$,kπ+$\frac{π}{2}$)即可求其的單調(diào)遞增區(qū)間.
解答 解:∵y=tanx的單調(diào)遞增區(qū)間為(kπ-$\frac{π}{2}$,kπ+$\frac{π}{2}$)(k∈Z),
令kπ-$\frac{π}{2}$<2x+$\frac{π}{4}$<kπ+$\frac{π}{2}$,解得$\frac{kπ}{2}$-$\frac{3π}{8}$<x<$\frac{kπ}{2}$+$\frac{π}{8}$,(k∈Z),
函數(shù)y=2tan(2x+$\frac{π}{4}$)的單調(diào)遞增區(qū)間是:($\frac{kπ}{2}$-$\frac{3π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$),(k∈Z).
故答案為:($\frac{kπ}{2}$-$\frac{3π}{8}$,$\frac{kπ}{2}$+$\frac{π}{8}$),(k∈Z)
點評 本題考查正切函數(shù)的單調(diào)性,著重考查學(xué)生整體代換的數(shù)學(xué)思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
上春晚次數(shù)x(單位:次) | 2 | 4 | 6 | 8 | 10 |
粉絲數(shù)量y(單位:萬人) | 10 | 20 | 40 | 80 | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 24 | C. | 36 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 24 | C. | 36 | D. | 48 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com