11.函數(shù)f(x)=lgx+x-3的零點有1個.

分析 將問題轉(zhuǎn)化為y=lgx與y=-x+3的交點個數(shù),畫出圖象,讀出即可.

解答 解:令f(x)=0,得到lgx=-x+3,
畫出y=lgx與y=-x的圖象,
如圖示:
∴函數(shù)f(x)有1個零點,
故答案為:1.

點評 本題考查了函數(shù)的零點問題,考查了數(shù)形結(jié)合思想,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,設(shè)a,b,c分別為角A,B,C的對邊,若a=5,A=$\frac{π}{4}$,cosB=$\frac{3}{5}$,則邊c=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=3,D是BC的中點,求直線DB1與平面A1C1D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某公司生產(chǎn)一款家用小型空氣凈化裝置的固定成本為20000元,每生產(chǎn)一臺裝置需要增加投入200元,經(jīng)市場調(diào)研,銷售該裝置的總收益(單位:元)滿足函數(shù)R(x)=$\left\{\begin{array}{l}{500x-\frac{1}{2}{x}^{2},0≤x≤400}\\{84500+100x,x>400}\end{array}\right.$,其中x是該空氣凈化裝置的月產(chǎn)量(單位:臺).
(1)將公司月利潤f(x)表示月產(chǎn)量x的函數(shù)關(guān)系;
(2)當(dāng)月產(chǎn)量x為何值時,公司所獲月利潤最大?并求出月利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若以F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0)為焦點的雙曲線過點(2,1),則該雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{2}-{y}^{2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(普通班)設(shè)動點P(x,y)到定點F($\frac{1}{2}$,0)的距離比到y(tǒng)軸的距離大$\frac{1}{2}$.記點P的軌跡為曲線C.
(1)求點P的軌跡方程;
(2)過F($\frac{1}{2}$,0)作直線m交曲線C(x≥0)于A、B兩點,若以AB為直徑的圓過點D(0,$\frac{1}{2}$),求三角形ABD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,在三棱柱ABC-A1B1C1中,各棱長均相等,且∠A1AB=∠A1AC=∠BAC=60°,則AB1與底面ABC所成角的正弦值為(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列等式中成立的個數(shù)是( 。伲$\root{n}{a}$)n=a(n∈N*且n>1);②$\root{n}{a}$n=a(n為大于1的奇數(shù));③$\root{n}{{a}^{n}}$=|a|=$\left\{\begin{array}{l}{a,(a≥0)}\\{-a,(a<0)}\end{array}\right.$(n為不等于零的偶數(shù)).
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.甲、乙兩個生物小組分別獨(dú)立開展對某生物離開恒溫箱的成活情況進(jìn)行研究,每次試驗一個生物,甲組能使生物成活的概率為$\frac{1}{3}$,乙組能使生物成活的概率為$\frac{1}{2}$,假定試驗后生物成活,則稱該試驗成功,如果生物不成話.則稱該次試驗是失敗的.
(1)如果乙小組成功了4次才停止試驗,求乙小組第四次成功前共有三次失敗,且恰有兩次連續(xù)失敗的概率;
(2)若甲、乙兩小組各進(jìn)行2次試驗,求甲小組實驗成功的次數(shù)多于乙小組的概率.

查看答案和解析>>

同步練習(xí)冊答案