12.設(shè)a,b都為正實數(shù)且a+b=1,則$\frac{a^2}{a+1}+\frac{b^2}{b+2}$的最小值為$\frac{1}{4}$.

分析 換元可化問題為正數(shù)s+t=4,求$\frac{1}{s}$+$\frac{4}{t}$-2的最小值,代入由基本不等式可得.

解答 解:令a+1=s,b+2=t,則a=s-1,b=t-2,
由題意可得s,t為正數(shù)且s-1+t-2=1,即s+t=4,
∴$\frac{a^2}{a+1}+\frac{b^2}{b+2}$=$\frac{(s-1)^{2}}{s}$+$\frac{(t-2)^{2}}{t}$
=s-2+$\frac{1}{s}$+t-4+$\frac{4}{t}$=$\frac{1}{s}$+$\frac{4}{t}$-2=$\frac{1}{4}$($\frac{1}{s}$+$\frac{4}{t}$)(s+t)-2
=$\frac{1}{4}$(5+$\frac{t}{s}$+$\frac{4s}{t}$)-2≥$\frac{1}{4}$(5+2$\sqrt{\frac{t}{s}•\frac{4s}{t}}$)-2=$\frac{1}{4}$
當(dāng)且僅當(dāng)$\frac{t}{s}$=$\frac{4s}{t}$即s=$\frac{4}{3}$且t=$\frac{8}{3}$即a=$\frac{1}{3}$且b=$\frac{2}{3}$時取等號.
故答案為:$\frac{1}{4}$.

點評 本題考查基本不等式求最值,換元并變形為可用基本不等式的形式是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求函數(shù)f(x)=|loga(x-2)|(a>1)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.過點P(-2,0)的直線與拋物線C:y2=4x相交于A,B兩點,且|PA|=$\frac{1}{2}$|AB|,則點A到拋物線C的焦點的距離為( 。
A.$\frac{5}{3}$B.$\frac{7}{5}$C.$\frac{9}{7}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.集合A={-3,-1,2,4},B={x∈R|2x<8},則A∩B=(  )
A.{-3}B.{-1,2}C.{-3,-1,2}D.{-3,-1,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出下列命題:
①“x2=1”是“x=1”的充分不必要條件;
②“x=-1”是“x2-3x+2=0”的必要不充分條件;
③命題“?x∈R,使得x2+x+1<0”的否定是“?x∈R,均有x2+x+1≥0”;
④命題“若x=y,則sinx=siny”的逆否命題為真命題;
其中真命題有③④.(把你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p:?x∈R,ex+x3+2x2+4≠0,則?p為( 。
A.?x0∈R,使得lnx0+x03+2x02+4=0B.?x0∈R,使得ex0+x03+2x02+4≠0
C.?x∈R,使得ex+x3+2x2+4=0D.?x0∈R,使得ex0+x03+2x02+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線y2=4x和點M(6,0),O為坐標(biāo)原點,直線l過點M,且與拋物線交于A,B兩點.
(1)求$\overrightarrow{OA}$•$\overrightarrow{OB}$;
(2)若△OAB的面積等于12$\sqrt{10}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若f(x)=2sinθ-cosx,則f′(α)等于( 。
A.sinαB.cosαC.2sinα-cosαD.-3cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知冪函數(shù)$y=({{m^2}-3m+3}){x^{{m^2}-m-1}}$在(0,+∞)單調(diào)遞減,則實數(shù)m的值為1.

查看答案和解析>>

同步練習(xí)冊答案