5.已知α是第二象限角,化簡(jiǎn)cosα$\sqrt{\frac{1-sinα}{1+sinα}}$+sinα$\sqrt{\frac{1-cosα}{1+cosα}}$得( 。
A.sinα-cosαB.-sinα-cosαC.-sinα+cosαD.sinα+cosα

分析 由α范圍,確定cosα<0,sinα>0,對(duì)解析式利用基本關(guān)系式等價(jià)變形,化簡(jiǎn)二次根式以及取絕對(duì)值得到選項(xiàng).

解答 解:因?yàn)棣潦堑诙笙藿,所以cosα<0,sinα>0,
所以簡(jiǎn)cosα$\sqrt{\frac{1-sinα}{1+sinα}}$+sinα$\sqrt{\frac{1-cosα}{1+cosα}}$=cosα$\sqrt{\frac{(1-sinα)^{2}}{1-si{n}^{2}α}}+sinα\sqrt{\frac{(1-cosα)^{2}}{1-co{s}^{2}α}}$=cosα$\sqrt{\frac{(1-sinα)^{2}}{co{s}^{2}α}}+sinα\sqrt{\frac{(1-cosα)^{2}}{si{n}^{2}α}}$=-(1-sinα)+(1-cosα)=sinα-cosα;
故選:A.

點(diǎn)評(píng) 本題考查了利用三角函數(shù)的基本關(guān)系式化簡(jiǎn)三角函數(shù)式;注意角度范圍,確定三角函數(shù)符號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若直線mx+2y+2=0與直線3x-y-2=0垂直,則m=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在等差數(shù)列{an}中,a1+a19=10,則a10的值為( 。
A.5B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.直線l過(guò)點(diǎn)(0,1),且傾斜角為450,則直線l的方程是( 。
A.x+y+1=0B.x-y+1=0C.x-y-1=0D.x+y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知點(diǎn)A(7,-4),B(-5,6)則線段AB垂直平分線方程是( 。
A.6x-5y-1=0B.5x+6y+1=0C.6x+5y-1=0D.5x-6y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽出20名學(xué)生作為樣本,其選報(bào)文科理科的情況如下表所示.
文科25
理科103
(1)若在該樣本中從報(bào)考文科的學(xué)生中隨機(jī)地選出3人召開(kāi)座談會(huì),試求3人中既有男生也有女生的概率;
(2)用假設(shè)檢驗(yàn)的方法分析有多大的把握認(rèn)為該中學(xué)的高三學(xué)生選報(bào)文理科與性別有關(guān)?參考公式和數(shù)據(jù):x2=$\frac{n({n}_{11}{n}_{12}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+n+1n+n+2}$.
P(x2≥K00.150.100.050.0250.0100.0050.001
K02.072.713.845.026.647.8810.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.化簡(jiǎn)2$\sqrt{1+sin10}$+$\sqrt{2+2cos10}$的結(jié)果是(  )
A.2sin5B.4cos5+2sin5C.-4cos5-2sin5D.-2sin5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的兩個(gè)焦點(diǎn),P在雙曲線上,若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,$|{\overrightarrow{P{F_1}}}|•|{\overrightarrow{P{F_2}}}|=2ac$(c為半焦距),則雙曲線的離心率為(  )
A.$\frac{{\sqrt{3}-1}}{2}$B.$\frac{{\sqrt{3}+1}}{2}$C.2D.$\frac{{\sqrt{5}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知x,y的取值如表所示:若y與x呈線性相關(guān),且回歸方程為$\widehat{y}$=$\widehat$x+$\frac{7}{2}$,則$\widehat$等于0.5
x234
y546

查看答案和解析>>

同步練習(xí)冊(cè)答案