7.設(shè)直線l過點(diǎn)(2,3),且與直線x-2y+1=0平行,若點(diǎn)P(a,2)(a>0)到直線l的距離為$\frac{\sqrt{5}}{5}$,試求a的值.

分析 求出平行線方程,代入點(diǎn)到直線的距離公式求解即可.

解答 解:直線l過點(diǎn)(2,3),且與直線x-2y+1=0平行的斜率為:$\frac{1}{2}$,
所求直線方程為:y-3=$\frac{1}{2}$(x-2),即直線方程為:x-2y+4=0,
點(diǎn)P(a,2)(a>0)到直線l的距離為$\frac{\sqrt{5}}{5}$,可得:$\frac{|a-2×2+4|}{\sqrt{{1}^{2}+{(-2)}^{2}}}$=$\frac{\sqrt{5}}{5}$
∵a>0,∴a=1(a=-1舍去).

點(diǎn)評(píng) 本題考查直線方程的求法,點(diǎn)到直線的距離公式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知點(diǎn)A(λ+1,μ-1,3),B(2λ,μ,λ-2μ),C(λ+3,μ-3,9)三點(diǎn)共線,則實(shí)數(shù)λ+μ=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若sinα-sinβ=$\frac{\sqrt{3}}{2}$,cosα-cosβ=$\frac{1}{2}$,則cos(α-β)的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系XOY中,以原點(diǎn)O為極點(diǎn),X軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C1的極坐標(biāo)方程為ρ=1,曲線C2參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{5}cosθ}\\{y=2+\sqrt{5}sinθ}\end{array}\right.$(θ是參數(shù)).
(1)求曲線C1和C2的直角坐標(biāo)系方程;
(2)若曲線C1和C2交于兩點(diǎn)A、B,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某程序框圖如圖所示,該程序運(yùn)行后輸出y的值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)是定義在(-∞,-1)∪(1,+∞)上的奇函數(shù),當(dāng)x>1時(shí),f(x)=$\frac{x}{x-1}$
(1)當(dāng)x<-1時(shí),求f(x)的解析式;
(2)求函數(shù)$f(\frac{1}{x})$的定義域;
(3)證明f(x)在(1,+∞)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.春節(jié)前,某市一過江大橋上掛了兩串彩燈,這兩串彩燈的第一次閃亮相互獨(dú)立,且都在通電后的6秒內(nèi)任一時(shí)刻等可能發(fā)生,然后每串彩燈以6秒內(nèi)間隔閃亮,那么這兩串彩燈同時(shí)通電后,它們第一次閃亮的時(shí)刻相差不超過3秒的概率是( 。
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線l的傾斜角為α,斜率為k,那么“$α>\frac{π}{3}$”是“$k>\sqrt{3}$”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知雙曲線中心在原點(diǎn),離心率等于2,且一個(gè)焦點(diǎn)坐標(biāo)為(4,0),求此雙曲線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案