分析 (I)由中位線定理和平行公理可知FG∥DE,故FG∥平面ADE;
(II)由AE⊥平面BCDE可知AE⊥BD,由正方形性質(zhì)得EC⊥BD,故而BD⊥平面ACE,從而平面ABD⊥平面ACE.
解答 證明:(I)∵點F,G分別是AB和AC的中點,
∴FG∥BC,又BC∥DE,
∴FG∥DE,∵FG?平面ADE,DE?平面ADE,
∴FG∥平面ADE.
(II)∵AE⊥平面BCDE,BD?平面BCDE,
∴AE⊥BD,
∵四邊形BCDE是正方形,
∴EC⊥BD,又AE?平面ACE,CE?平面ACE,AE∩CE=C,
∴BD⊥平面ACE,∵BD?平面ABD,
∴平面ABD⊥平面ACE.
點評 本題考查了線面平行,面面垂直的判定,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-2]∪{1} | B. | (-∞,-2]∪[1,2] | C. | [1,+∞) | D. | [-2,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x>0,y>0 | B. | x>0,y<0 | C. | x<0,y>0 | D. | x<0,y<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com