分析 求出函數(shù)f(x)的導數(shù),問題轉化為二次函數(shù)g(x)=2ax2-2x+1在[2,4]上的取值問題根據(jù)二次函數(shù)的性質判斷即可.
解答 解:f(x)的定義域是(0,+∞),
f′(x)=2ax-2+$\frac{1}{x}$=$\frac{2{ax}^{2}-2x+1}{x}$,
令g(x)=2ax2-2x+1,(x>0),
若函數(shù)f(x)(a>0)在[2,4]上無極值點,
則g(x)≥0(或g(x)≤0)在[2,4]恒成立,
若g(x)≥0在[2,4]恒成立,
則$\left\{\begin{array}{l}{\frac{1}{2a}≤2}\\{g(2)=8a-3≥0}\end{array}\right.$,或$\left\{\begin{array}{l}{\frac{1}{2a}≥4}\\{g(4)=32a-7≥0}\end{array}\right.$,
解得:a≥$\frac{3}{8}$,
若g(x)≤0在[2,4]恒成立,
則$\left\{\begin{array}{l}{2<\frac{1}{2a}<4}\\{g(2)=8a-3≤0}\\{g(4)=32a-7≤0}\end{array}\right.$,
解得:$\frac{1}{8}$<a<$\frac{7}{32}$,
綜上:a≥$\frac{3}{8}$或$\frac{1}{8}$<a<$\frac{7}{32}$.
點評 本題考查了函數(shù)的單調(diào)性問題,考查導數(shù)的應用,二次函數(shù)的性質,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2013}$-1 | B. | $\sqrt{2014}$-1 | C. | $\sqrt{2015}$-1 | D. | $\sqrt{2015}$+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 相切 | B. | 相離 | ||
C. | 直線過圓心 | D. | 相交但直線不過圓心 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com