20.已知復(fù)數(shù)z1=6+8i,z2=9-4i.
(1)試比較|Z1|與|Z2|的大。
(2)判斷復(fù)數(shù)z1、z2在復(fù)平面對應(yīng)的點(diǎn)Z1、Z2與圓x2+y2=100的位置關(guān)系.

分析 (1)代入模長公式計(jì)算;(2)比較復(fù)數(shù)的模和圓的半徑的關(guān)系.

解答 解:(1)|Z1|=$\sqrt{{6}^{2}+{8}^{2}}$=10,|Z2|=$\sqrt{{9}^{2}+{4}^{2}}$=$\sqrt{97}$.
(2)圓x2+y2=100的半徑r=10,
∵|z1|=r,|z2|<r,∴Z1在圓上,Z2在圓內(nèi).

點(diǎn)評 本題考查了復(fù)數(shù)的模長計(jì)算,點(diǎn)與圓的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,且S2=6,S4=30,n∈N*,數(shù)列{bn}滿足bn•bn+1=an,b1=1
(I)求an,bn;
(Ⅱ)求數(shù)列{bn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x+a(x<0)}\\{f(x-1)(x≥0)}\end{array}\right.$,且函數(shù)y=f(x)-x恰有3個不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如果把地球看作是一個球,規(guī)定在球面上,1′的圓心角對應(yīng)的弧長定義為1海里,若地球半徑是6376.3千米,計(jì)算1海里合多少千米?(精確到0.0001).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知tan(α-β)=$\frac{1}{2}$,tanβ=-$\frac{1}{7}$,且α,β∈($\frac{π}{2}$,$\frac{3}{2}$π),則2α-β=$\frac{5π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在非直角三角形ABC中,若∠A+∠C=2∠B,且tanAtanC=2+$\sqrt{3}$,求△ABC的三內(nèi)角大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=sin2(2x+$\frac{π}{3}$)的導(dǎo)數(shù)是( 。
A.f′(x)=2sin(2x+$\frac{π}{3}$)B.f′(x)=4sin(2x+$\frac{π}{3}$)C.f′(x)=sin(4x+$\frac{2π}{3}$)D.f′(x)=2sin(4x+$\frac{2π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.定義區(qū)間(c,d)、(c,d]、[c,d)、[c,d]的長度均為d-c(d>c),己知實(shí)數(shù)p>0,則滿足不等式$\frac{1}{x-p}$+$\frac{1}{x}$≥1的x構(gòu)成的區(qū)間長度之和為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)是以1為周期的偶函數(shù),且$f(-\frac{2}{5})=3$,若$sinα=\frac{{\sqrt{5}}}{5}$,則f(cos2α)的值是( 。
A.-3B.3C.$-\frac{{\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

同步練習(xí)冊答案