12.函數(shù)f(x)=sin2(2x+$\frac{π}{3}$)的導(dǎo)數(shù)是(  )
A.f′(x)=2sin(2x+$\frac{π}{3}$)B.f′(x)=4sin(2x+$\frac{π}{3}$)C.f′(x)=sin(4x+$\frac{2π}{3}$)D.f′(x)=2sin(4x+$\frac{2π}{3}$)

分析 根據(jù)復(fù)合函數(shù)的導(dǎo)數(shù)公式以及導(dǎo)數(shù)的運(yùn)算法則進(jìn)行求導(dǎo)即可.

解答 解:∵f(x)=sin2(2x+$\frac{π}{3}$),
∴f′(x)=2sin(2x+$\frac{π}{3}$)cos(2x+$\frac{π}{3}$)×2=2sin(4x+$\frac{2π}{3}$).
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)的導(dǎo)數(shù)的計(jì)算,要求熟練掌握掌握常見函數(shù)的導(dǎo)數(shù)公式,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求下列函數(shù)的零點(diǎn)個(gè)數(shù):
(1)f(x)=log${\;}_{\frac{2}{3}}$x+x2-2;
(2)f(x)=3x-log${\;}_{\frac{1}{2}}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知平面α和β,在平面α內(nèi)任取一條直線α,在β內(nèi)總存在直線b∥a,則α與β的位置關(guān)系是平行(填“平行”或“相交”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知復(fù)數(shù)z1=6+8i,z2=9-4i.
(1)試比較|Z1|與|Z2|的大;
(2)判斷復(fù)數(shù)z1、z2在復(fù)平面對(duì)應(yīng)的點(diǎn)Z1、Z2與圓x2+y2=100的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.計(jì)算(sin30)0-|-5|+($\frac{1}{2}$)-1+$\sqrt{(-7)^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)a=3log${\;}_{\frac{1}{3}}$2,b=3log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,c=$\sqrt{\frac{2}{3}}$,則下列結(jié)論正確的是( 。
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)向量$\overrightarrow{a}$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),$\overrightarrow$=(sin$\frac{3x}{2}$,cos$\frac{3x}{2}$),x∈[0,$\frac{π}{2}$].
(1)求$\overrightarrow{a}$•$\overrightarrow$與|$\overrightarrow{a}$+$\overrightarrow$|;
(2)若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$+$\sqrt{2}$|$\overrightarrow{a}$+$\overrightarrow$|,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求函數(shù)y=|x+1|+|x-2|的最小值(其中-3≤x≤-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}的首項(xiàng)${a_1}=\frac{2}{3}$,${a_{n+1}}=\frac{{2{a_n}}}{{{a_n}+1}}$,n=1,2,3,….
(Ⅰ)證明:數(shù)列$\{\frac{1}{a_n}-1\}$是等比數(shù)列;  
(Ⅱ)數(shù)列 $\{\frac{2^n}{a_n}\}$的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案