17.圓(x+2)2+(y-3)2=5的圓心坐標(biāo)、半徑分別是( 。
A.(2,-3)、5B.(-2,3)、5C.(-2,3)、$\sqrt{5}$D.( 3,-2)、$\sqrt{5}$

分析 直接由圓的標(biāo)準(zhǔn)方程求得圓心坐標(biāo)和半徑.

解答 解:由(x+2)2+(y-3)2=5,得$[x-(-2)]^{2}+(y-3)^{2}=(\sqrt{5})^{2}$,
∴圓(x+2)2+(y-3)2=5的圓心坐標(biāo)為(-2,3),半徑是$\sqrt{5}$.
故選:C.

點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程,明確圓的標(biāo)準(zhǔn)方程的形式是關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S2014-S1=1,則S2015=$\frac{2015}{2013}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在(1+x)+(1+x)2+(1+x)3+…+(1+x)9的展開式中,x2的系數(shù)等于( 。
A.280B.300C.210D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.復(fù)數(shù)z=$\frac{2+i}{i}$的共軛復(fù)數(shù)是(  )
A.2+iB.2-iC.1+2iD.1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{1≤x≤3}\\{x-y≥-1}\\{x-y≤0}\end{array}\right.$,則z=x+y的最大值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知A,B,C,D是空間四點(diǎn),命題p:A,B,C,D四點(diǎn)不共面;命題q:直線AB和CD不相交,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖是三棱錐D-ABC的三視圖,則該三棱錐外接球的表面積為( 。
A.10πB.12πC.14πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給出下列四個(gè)命題:
①命題“對(duì)任意x∈R,有x2≥0”的否定是“存在x0∈R,有x02≥0”;
②“存在x0∈R,使得x02-x0>0”的否定是:“任意x∈R,均有x2-x<0”;
③任意x∈[-1,2],x2-2x≤3;
④存在x0∈R,使得x02+$\frac{1}{x_{0}^{2}+1}$≤1.
其中真命題的序號(hào)③④(填寫所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若x,y滿足約束條件$\left\{\begin{array}{l}{x-2y+1≤0}\\{2x-y+2≥0}\\{x+y-2≤0}\end{array}\right.$,z=3x+y+m的最大值為1,則m為(  )
A.-1B.-3C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案