分析 (1)當(dāng)a=2時(shí),f(x)=lnx-2(x-1)的定義域?yàn)椋?,+∞),再利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,從而求解函數(shù)的最值;
(2)設(shè)切線l2的方程為y=k2x,從而由導(dǎo)數(shù)及斜率公式可求得切點(diǎn)為(1,e),k2=e;再設(shè)l1的方程為y=$\frac{1}{e}$x;設(shè)l1與曲線y=f(x)的切點(diǎn)為(x1,y1),從而可得y1=$\frac{{x}_{1}}{e}$=1-ax1,a=$\frac{1}{{x}_{1}}$-$\frac{1}{e}$;結(jié)合y1=lnx1-a(x1-1)可得lnx1-1+$\frac{1}{{x}_{1}}$-$\frac{1}{e}$=0,再令m(x)=lnx-1+$\frac{1}{x}$-$\frac{1}{e}$,從而求導(dǎo)確定函數(shù)的單調(diào)性,從而確定$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$,問題得證.
解答 解:(1)當(dāng)a=2時(shí),f(x)=lnx-2(x-1)的定義域?yàn)椋?,+∞),
f′(x)=$\frac{1}{x}$-2=$\frac{1-2x}{x}$;
當(dāng)x∈(0,$\frac{1}{2}$)時(shí),f′(x)>0,當(dāng)x∈($\frac{1}{2}$,+∞)時(shí),f′(x)<0,
即函數(shù)f(x)在(0,$\frac{1}{2}$)上單調(diào)遞增,在($\frac{1}{2}$,+∞)上單調(diào)遞減.
所以f(x)max=f($\frac{1}{2}$)=1-ln2,沒有最小值.
(2)證明:設(shè)切線l2的方程為y=k2x,切點(diǎn)為(x2,y2),則y2=${e}^{{x}_{2}}$,
k2=g′(x2)=${e}^{{x}_{2}}$=$\frac{{y}_{2}}{{x}_{2}}$,
所以x2=1,y2=e,則k2=e.
由題意知,切線l1的斜率為k1=$\frac{1}{{k}_{2}}$=$\frac{1}{e}$,l1的方程為y=$\frac{1}{e}$x;
設(shè)l1與曲線y=f(x)的切點(diǎn)為(x1,y1),則k1=f′(x1)=$\frac{1}{{x}_{1}}$-a=$\frac{1}{e}$=$\frac{{y}_{1}}{{x}_{1}}$,
所以y1=$\frac{{x}_{1}}{e}$=1-ax1,a=$\frac{1}{{x}_{1}}$-$\frac{1}{e}$.
又因?yàn)閥1=lnx1-a(x1-1),消去y1和a后,
整理得lnx1-1+$\frac{1}{{x}_{1}}$-$\frac{1}{e}$=0.
令m(x)=lnx-1+$\frac{1}{x}$-$\frac{1}{e}$=0,
則m′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,m(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增.
若x1∈(0,1),因?yàn)閙($\frac{1}{e}$)=-2+e-$\frac{1}{e}$>0,m(1)=-$\frac{1}{e}$<0,所以x1∈($\frac{1}{e}$,1),
而a=$\frac{1}{{x}_{1}}$-$\frac{1}{e}$在x1∈($\frac{1}{e}$,1)上單調(diào)遞減,所以$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$.
若x1∈(1,+∞),因?yàn)閙(x)在(1,+∞)上單調(diào)遞增,且m(e)=0,則x1=e,
所以a=$\frac{1}{{x}_{1}}$-$\frac{1}{e}$=0(舍去).
綜上可知,$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$.
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)討論含參數(shù)函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求曲線的切線問題,主要考查利用導(dǎo)函數(shù)研究曲線的切線及結(jié)合方程有解零點(diǎn)存在定理的應(yīng)該用求參數(shù)的問題,得到不等式的證明;屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角三角形 | B. | 等腰三角形或直角三角形 | ||
C. | 正三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
福娃名稱 | 貝貝 | 晶晶 | 歡歡 | 迎迎 | 妮妮 |
數(shù)量 | 1 | 1 | 1 | 2 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6cm3 | B. | 12cm3 | C. | 18cm3 | D. | 36cm3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com