17.在△ABC中,a,b,c分別是角A、B、C的對(duì)邊,且sin2(${\frac{π-A}{2}}$)=$\frac{b+c}{2c}$,則△ABC的形狀是(  )
A.直角三角形B.等腰三角形或直角三角形
C.正三角形D.等腰直角三角形

分析 根據(jù)二倍角公式和余弦定理化簡已知的式子,即可判斷出△ABC的形狀.

解答 解:由題意得,sin2(${\frac{π-A}{2}}$)=$\frac{b+c}{2c}$,
所以cos2($\frac{A}{2}$)=$\frac{b+c}{2c}$,即$\frac{1+cosA}{2}=\frac{b+c}{2c}$,
所以c(1+$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$)=b+c,
則c×$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=b,
化簡得a2+b2=c2,
所以△ABC是直角三角形,
故選:A.

點(diǎn)評(píng) 本題考查余弦定理,以及二倍角公式的應(yīng)用,熟練掌握定理和公式是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且$\frac{{S}_{n}+1}{3{a}_{n}}$=1.求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義在R上的偶函數(shù)y=f(x)滿足f(x+1)=-f(x),且當(dāng)x∈(0,1]時(shí)單調(diào)遞增,則(  )
A.$f(\frac{1}{3})<f(-5)<f(\frac{5}{2})$B.$f(\frac{1}{3})<f(\frac{5}{2})<f(-5)$C.$f(\frac{5}{2})<f(\frac{1}{3})<f(-5)$D.$f(-5)<f(\frac{1}{3})<f(\frac{5}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.定義在區(qū)間(m-1,m+1)上的函數(shù)f(x)=lnx-$\frac{9}{2}$x2在該區(qū)間上不是單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍是[1,$\frac{4}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1.
(Ⅰ) 請(qǐng)?jiān)诰段CE上找到點(diǎn)F的位置,使得恰有直線BF∥平面ACD,并證明;
(Ⅱ)在(Ⅰ)的條件下,求二面角F-BE-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.$\frac{2cos10°-sin20°}{sin70°}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,直線A1B與平面BB1C1C所成角的大小為arctan$\frac{{\sqrt{5}}}{5}$.求三棱錐C1-A1BC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx-a(x-1),g(x)=ex
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的最值;
(2)當(dāng)a≠0時(shí),過原點(diǎn)分別作曲線y=f(x)與y=g(x)的切線l1,l2,已知兩切線的斜率互為倒數(shù),證明:$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知a,b>0,證明:a3+b3≥a2b+ab2

查看答案和解析>>

同步練習(xí)冊(cè)答案