A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 1 | D. | 2 |
分析 求出O′A′=A′B′=$\sqrt{2}$,O′B′=2,從而在△AOB中,OA=2O′A′,OB=O′B′,且OA⊥OB,由此能求出△AOB中最長的邊長.
解答 解:如圖,Rt△A′O′B′的直觀圖,且△A′O′B′為面積為1,
∴設(shè)O′A′=A′B′=x,則$\frac{1}{2}{x}^{2}$=1,
解得O′A′=A′B′=$\sqrt{2}$,∴O′B′=$\sqrt{2+2}$=2,
∴△AOB中,OA=2O′A′=2$\sqrt{2}$,OB=O′B′=2,且OA⊥OB,
∴AB=$\sqrt{(2\sqrt{2})^{2}+{2}^{2}}$=2$\sqrt{3}$.
∴△AOB中最長的邊長為2$\sqrt{3}$.
故選:B.
點評 本題考查三角形中最長邊長的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意平面圖形直觀圖的性質(zhì)的合理運(yùn)用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{9}$ | B. | $-\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | $-\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 100($\sqrt{3}$+1)海里 | B. | 50($\sqrt{3}+1$)海里 | C. | 50$\sqrt{3}$海里 | D. | 50$\sqrt{6}$海里 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com