5.已知集合$A=\{x|\frac{x+2}{4-x}>0\},B=\{x|{x^2}-3ax+2{a^2}<0\}$.
(1)若B⊆A,求實(shí)數(shù)a的取值范圍;
(2)若A∩B=∅,求實(shí)數(shù)a的取值范圍.

分析 求出A中不等式的解集確定出A,分類討論a的范圍表示出B,
(1)根據(jù)B為A的子集,確定出a的范圍即可;
(2)根據(jù)兩集合的交集為空集,分B為空集與B不為空集兩種情況求出a的范圍即可.

解答 解:由A中不等式變形得:(x+2)(x-4)<0,
解得:-2<x<4,即A=(-2,4),
由B中不等式變形得:(x-a)(x-2a)<0,
當(dāng)a>2a,即a<0時(shí),解得:2a<x<a,此時(shí)B=(2a,a);
當(dāng)a<2a,即a>0時(shí),解得:a<x<2a,此時(shí)B=(a,2a),
當(dāng)a=2a,即a=0時(shí),B=∅,
(1)∵B⊆A,B=(2a,a),A=(-2,4),
∴$\left\{\begin{array}{l}{2a≥-2}\\{a≤4}\end{array}\right.$,且a<0,即-1≤a<0;
∵B⊆A,B=(a,2a),A=(-2,4),
∴$\left\{\begin{array}{l}{a≥-2}\\{2a≤4}\end{array}\right.$,且a>0,即0<a≤2,
當(dāng)B=∅,即a=0時(shí),滿足題意,
綜上,a的范圍為-1≤a≤2;
(2)A∩B=∅,
當(dāng)B=∅時(shí),a=2a,即a=0;
當(dāng)B≠∅時(shí),B=(2a,a),A=(-2,4),
可得a≤-2或a≥4(舍去);
B=(a,2a),A=(-2,4),可得2a≤-2或a≥4,
解得:a≤-1(舍去)或a≥4,
綜上,a的范圍為:a≥4或a≤-2或a=0.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.奇函數(shù)f(x)(x∈R)滿足f(-4)=f(1)=0,且在區(qū)間(0,2]與[2,+∞)上分別是增函數(shù)和減函數(shù),則滿足x3•f(x)>0的x的取值范圍是( 。
A.(-4,-1)∪(1,4)B.(-∞,4)∪(-1,0)C.(-∞,-4)∪(4,+∞)D.(-∞,-4)∪(-1,0)∪(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知y=f(x)是定義在[1,4)上的函數(shù),則函數(shù)y=f(2x+1)的定義域?yàn)閇0,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知f(x)=$\frac{π}{2}-2arcsin({2x+1})$,則${f^{-1}}({-\frac{π}{2}})$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知不等式x2-3x+t<0的解集為{x|1<x<m,m∈R}.
(1)求t,m的值;
(2)若f(x)=-x2+ax+4在(-1,1)上遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.正方體ABCD-A1B1C1D1中,E、F分別是對(duì)角線A1B1、B1C1的中點(diǎn).求證:EF∥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知A(0,2),B(1,$\sqrt{3}$),B′為點(diǎn)B關(guān)于y軸的對(duì)稱點(diǎn)
(1)求△ABB′的外接圓方程
(2)過(guò)點(diǎn)$P(1,\sqrt{2})$作△ABB′的外接圓的兩條互相垂直的弦AC,BD,求|AC|+|BD|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知A(1,-2),B(a,-1),C(-b,0)三點(diǎn)共線,其中a>0,b>0,則a與b的關(guān)系式為2a+b=1,$\frac{1}{a}$+$\frac{2}$的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.有一球內(nèi)接圓錐,底面圓周和頂點(diǎn)均在球面上,其底面積為3π,已知球的半徑R=2,則此圓錐的體積為π或3π.

查看答案和解析>>

同步練習(xí)冊(cè)答案