分析 a1=1,an=n+1(n≥2),當n≥2時,$\frac{1}{{a}_{n}{a}_{n+2}}$=$\frac{1}{(n+1)(n+3)}$=$\frac{1}{2}(\frac{1}{n+1}-\frac{1}{n+3})$.利用“裂項求和”即可得出.
解答 證明:∵a1=1,an=n+1(n≥2),
∴當n≥2時,$\frac{1}{{a}_{n}{a}_{n+2}}$=$\frac{1}{(n+1)(n+3)}$=$\frac{1}{2}(\frac{1}{n+1}-\frac{1}{n+3})$.
∴Tn=$\frac{1}{1×4}$+$\frac{1}{2}[(\frac{1}{3}-\frac{1}{5})+(\frac{1}{4}-\frac{1}{6})+(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{n}-\frac{1}{n+2})+(\frac{1}{n+1}-\frac{1}{n+3})]$
=$\frac{1}{4}+\frac{1}{2}(\frac{1}{3}+\frac{1}{4}-\frac{1}{n+2}-\frac{1}{n+3})$
<$\frac{1}{4}+\frac{1}{2}(\frac{1}{3}+\frac{1}{4})$=$\frac{13}{24}$$<\frac{5}{3}$.
∴Tn<$\frac{5}{3}$.
點評 本題考查了“裂項求和”方法、“放縮法”,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com