10.同時(shí)擲兩顆骰子,向上點(diǎn)數(shù)之和小于5的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{5}$C.$\frac{1}{6}$D.$\frac{1}{2}$

分析 列舉出所有情況,找出向上點(diǎn)數(shù)之和小于5的情況,然后根據(jù)古典概型的概率計(jì)算公式進(jìn)行求解即可

解答 解:列表得:

 (1,6) (2,6)(3,6)(4,6)(5,6)(6,6)
 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
共有36種等可能的結(jié)果,向上的點(diǎn)數(shù)之和是5的情況有6種,分別為(1,3),(1,2),(1,1),(2,1),(3,1),(2,2)
∴向上點(diǎn)數(shù)之和小于5的概率概為$\frac{6}{36}$=$\frac{1}{6}$,
故選:C

點(diǎn)評 本題主要考查了古典概型及其概率計(jì)算公式,同時(shí)考查了列舉法的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若?x∈(0,+∞),都有xf′(x)<2f(x)成立,則( 。
A.2f($\sqrt{3}$)>3f($\sqrt{2}$)B.2f(1)<3f($\sqrt{2}$)C.4f($\sqrt{3}$)<3f(2)D.4f(1)>f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,cosA=$\frac{1}{3}$,3sinB=2sinC,且△ABC的面積為2$\sqrt{2}$,則邊BC的長為( 。
A.2$\sqrt{3}$B.3C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(a+$\frac{1}{a}$)x2+x(a>0)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上的點(diǎn)$M(2,\sqrt{2})$到兩焦點(diǎn)的距離之和等于$4\sqrt{2}$.
(Ⅰ)求橢圓G的方程;
(Ⅱ)經(jīng)過橢圓G右焦點(diǎn)F的直線m(不經(jīng)過點(diǎn)M)與橢圓交于A,B兩點(diǎn),與直線l:x=4相交于C點(diǎn),記直線MA,MB,MC的斜率分別為k1,k2,k3.求證:$\frac{{{k_1}+{k_2}}}{k_3}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.不等式x2-x>0的解集是( 。
A.(1,+∞)B.(0,1)C.(-∞,0)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的長軸長為4,離心率為$\frac{{\sqrt{6}}}{3}$.
(I)求橢圓C的方程;
(Ⅱ)試判斷命題“若過點(diǎn)M(1,0)的動直線l交橢圓于A,B兩點(diǎn),則在直角坐標(biāo)平面上存在定點(diǎn)N,使得以線段AB為直徑的圓恒過點(diǎn)N”的真假,若為真命題,求出定點(diǎn)N的坐標(biāo);若為假命題,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知A(-3,0),B(0,4),M是圓C:(x-2)2+y2=1上一個動點(diǎn),則△MAB的面積的最小值為( 。
A.4B.5C.7.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={x|2x-8<0},B={x|0<x<6},全集U=R,求:
(1)A∩B;
(2)(∁UA)∪B.

查看答案和解析>>

同步練習(xí)冊答案