【題目】已知函數(shù),
(Ⅰ)若討論的單調(diào)性;
(Ⅱ)若過點可作函數(shù)圖象的兩條不同切線,求實數(shù)的取值范圍.
【答案】(Ⅰ) 見解析;(Ⅱ) .
【解析】試題分析:(Ⅰ)分 討論函數(shù)的單調(diào)性;(Ⅱ)求出經(jīng)過點P的切線方程,由 在切線上,得到 ,問題轉(zhuǎn)化為有兩個不同的正數(shù)解,令,由單調(diào)性求出a的范圍.
試題解析:(Ⅰ)
①當(dāng)時, ,此時, 上是減函數(shù)
②當(dāng)時, ,得;
,得
此時, 在上單調(diào)遞減,在是增函數(shù)
③當(dāng)時,解,得,
此時, 在和是減函數(shù),在是增函數(shù)
(Ⅱ)設(shè)點是函數(shù)圖象上的切點,則過點的切線的斜率為,
所以過點的切線方程為.
因為點在切線上,所以
即.
若過點可作函數(shù)圖象的兩條不同切線,
則方程有兩個不同的正數(shù)解.
令,則函數(shù)與軸正半軸有兩個不同的交點.
令,解得或.
因為, ,
所以必須,即.
所以實數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg ,f(1)=0,且f(2)﹣f( )=lg2.
(1)求f(x)的表達式;
(2)若x∈(0,+∞)時方程f(x)=lgt有解,求實數(shù)t的取值范圍;
(3)若函數(shù)y=f(x)﹣lg(8x+m)的無零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題:實數(shù)滿足(),命題:實數(shù)滿足.
(1)若且“”為真,求實數(shù)的取值范圍;
(2)若是的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹腻涹w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知1丈為10尺,該鍥體的三視圖如圖所示,則該鍥體的體積為( )
A. 10000立方尺 B. 11000立方尺 C. 12000立方尺 D. 13000立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,氣象部門預(yù)報,在海面上生成了一股較強臺風(fēng),在據(jù)臺風(fēng)中心60千米的圓形區(qū)域內(nèi)將受到嚴(yán)重破壞,臺風(fēng)中心這個從海岸M點登陸,并以72千米/小時的速度沿北偏西60°的方向移動,已知M點位于A城的南偏東15°方向,距A城 千米;M點位于B城的正東方向,距B城 千米,假設(shè)臺風(fēng)在移動的過程中,其風(fēng)力和方向保持不變,請回答下列問題:
(1)A城和B城是否會受到此次臺風(fēng)的侵襲?并說明理由;
(2)若受到此次臺風(fēng)的侵襲,改城受到臺風(fēng)侵襲的持續(xù)時間有多少小時?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一兒童游樂場擬建造一個“蛋筒”型游樂設(shè)施,其軸截面如圖中實線所示. 是等腰梯形, 米, (在的延長線上, 為銳角). 圓與都相切,且其半徑長為米. 是垂直于的一個立柱,則當(dāng)的值設(shè)計為多少時,立柱最矮?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com