12.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點為F1,F(xiàn)2,P為橢圓C上一點,且PF2⊥x軸,若△PF1F2的內(nèi)切圓半徑r=$\frac{c}{2}$,則橢圓C的離心率為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

分析 設出橢圓的焦點坐標,令x=c,求得|PF2|=$\frac{^{2}}{a}$,由橢圓的定義可得,|PF1|=2a-$\frac{^{2}}{a}$,在直角△PF1F2中,運用面積相等,可得內(nèi)切圓的半徑r,由條件化簡整理,結(jié)合離心率公式,計算即可得到所求值.

解答 解:由橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點為F1(-c,0),F(xiàn)2(c,0),
P為橢圓C上一點,且PF2⊥x軸,
可得|F1F2|=2c,由x=c,可得y=±b$\sqrt{1-\frac{{c}^{2}}{{a}^{2}}}$=±$\frac{^{2}}{a}$,
即有|PF2|=$\frac{^{2}}{a}$,
由橢圓的定義可得,|PF1|=2a-$\frac{^{2}}{a}$,
在直角△PF1F2中,$\frac{1}{2}$|PF2|•|F1F2|=$\frac{1}{2}$r(|F1F2|+|PF1|+|PF2|),
可得△PF1F2的內(nèi)切圓半徑r=$\frac{\frac{^{2}}{a}•2c}{2a+2c}$=$\frac{1}{2}$c,
即有2b2=2(a2-c2)=a(a+c),
整理,得a=2c,
橢圓C的離心率為e=$\frac{c}{a}$=$\frac{1}{2}$.
故選:B.

點評 本題考查橢圓的離心率的求法,注意運用橢圓的定義和三角形的內(nèi)切圓的半徑的求法,考查化簡整理的運算能力,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.一個盒中有12個乒乓球,其中9個新的(未用過的球稱為新球),3個舊的(新球用一次即稱為舊球).現(xiàn)從盒子中任取3個球來用,用完后裝回盒中,設隨機變量X表示此時盒中舊球個數(shù).
(1)求盒中新球仍是9個的概率;
(2)求隨機變量X的概率分布.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.命題“?x∈(0,+∞),x+$\frac{4}{x}$<4”的否定的真假是真.(填“真”或“假”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.“若x,y∈R,x2+y2=0,則x,y全為0”的逆否命題是( 。
A.若x,y∈R,x,y全不為0,則x2+y2≠0B.若x,y∈R,x,y不全為0,則x2+y2=0
C.若x,y∈R,x,y不全為0,則x2+y2≠0D.若x,y∈R,x,y全為0,則x2+y2≠0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某客運公司用A,B兩種型號的車輛承擔甲、乙兩地的長途客運業(yè)務,每車每天往返一次.A、B兩種型號的車輛的載客量分別為32人和48人,從甲地到乙地的營運成本依次為1500元/輛和2000元/輛.公司擬組建一個不超過21輛車的車隊,并要求B種型號的車不多于A種型號車5輛.若每天從甲地運送到乙地的旅客不少于800人,為使公司從甲地到乙地的營運成本最小,應配備A、B兩種型號的車各多少輛?并求出最小營運成本.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,角A,B,C所對的邊分別為a,b,c,且b=c,sinA-sinB=($\sqrt{3}$-1)sinC.
(1)求B的大;
(2)若△ABC的面積為4$\sqrt{3}$,求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1(a>0),P($\frac{6\sqrt{2}}{5}$,-$\frac{8}{5}$)是橢圓E上的一點.
(1)求橢圓E的方程;
(2)若直線l與橢圓相交于B、C兩點,且滿足kOB•kOC=-$\frac{1}{2}$,O為坐標原點,求證:△OBC的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知復數(shù)z=$\frac{{a}^{2}-i}{i}$(a∈R,i為虛數(shù)單位),若z+a2是純虛數(shù),則a的值為( 。
A.±1B.1C.-1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知{an}是遞增的等比數(shù)列,且a2+a3=-1,那么首項a1的取值范圍是$({-∞\;,\;-\frac{1}{2}})$.

查看答案和解析>>

同步練習冊答案