A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 設出橢圓的焦點坐標,令x=c,求得|PF2|=$\frac{^{2}}{a}$,由橢圓的定義可得,|PF1|=2a-$\frac{^{2}}{a}$,在直角△PF1F2中,運用面積相等,可得內(nèi)切圓的半徑r,由條件化簡整理,結(jié)合離心率公式,計算即可得到所求值.
解答 解:由橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點為F1(-c,0),F(xiàn)2(c,0),
P為橢圓C上一點,且PF2⊥x軸,
可得|F1F2|=2c,由x=c,可得y=±b$\sqrt{1-\frac{{c}^{2}}{{a}^{2}}}$=±$\frac{^{2}}{a}$,
即有|PF2|=$\frac{^{2}}{a}$,
由橢圓的定義可得,|PF1|=2a-$\frac{^{2}}{a}$,
在直角△PF1F2中,$\frac{1}{2}$|PF2|•|F1F2|=$\frac{1}{2}$r(|F1F2|+|PF1|+|PF2|),
可得△PF1F2的內(nèi)切圓半徑r=$\frac{\frac{^{2}}{a}•2c}{2a+2c}$=$\frac{1}{2}$c,
即有2b2=2(a2-c2)=a(a+c),
整理,得a=2c,
橢圓C的離心率為e=$\frac{c}{a}$=$\frac{1}{2}$.
故選:B.
點評 本題考查橢圓的離心率的求法,注意運用橢圓的定義和三角形的內(nèi)切圓的半徑的求法,考查化簡整理的運算能力,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若x,y∈R,x,y全不為0,則x2+y2≠0 | B. | 若x,y∈R,x,y不全為0,則x2+y2=0 | ||
C. | 若x,y∈R,x,y不全為0,則x2+y2≠0 | D. | 若x,y∈R,x,y全為0,則x2+y2≠0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ±1 | B. | 1 | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com