15.若|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,且$\overrightarrow{m}=2\overrightarrow{a}+\overrightarrow$,$\overrightarrow{n}=\overrightarrow{a}-4\overrightarrow$,求向量$\overrightarrow{m}$與$\overrightarrow{n}$的夾角θ的余弦值.

分析 運用向量的數(shù)量積的定義可得向量a,b的數(shù)量積,求得向量m,n的數(shù)量積和模,再由向量的夾角公式:cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$,計算即可得到所求值.

解答 解:|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,
可得$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|cos60°=2×1×$\frac{1}{2}$=1,
由$\overrightarrow{m}=2\overrightarrow{a}+\overrightarrow$,$\overrightarrow{n}=\overrightarrow{a}-4\overrightarrow$,
可得$\overrightarrow{m}$•$\overrightarrow{n}$=2$\overrightarrow{a}$2-4$\overrightarrow$2-7$\overrightarrow{a}$•$\overrightarrow$=8-4-7=-3,
|$\overrightarrow{m}$|=$\sqrt{4{\overrightarrow{a}}^{2}+{\overrightarrow}^{2}+4\overrightarrow{a}•\overrightarrow}$=$\sqrt{16+1+4}$=$\sqrt{21}$,
|$\overrightarrow{n}$|=$\sqrt{{\overrightarrow{a}}^{2}-8\overrightarrow{a}•\overrightarrow+16{\overrightarrow}^{2}}$=$\sqrt{4-8+16}$=2$\sqrt{3}$,
則cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{-3}{\sqrt{21}•2\sqrt{3}}$=-$\frac{\sqrt{7}}{14}$.

點評 本題考查向量的夾角的余弦值,考查向量的數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求函數(shù)y=($\frac{1}{3}$)${\;}^{-2{x}^{2}-8x+1}$(-3≤x≤1)的單調(diào)區(qū)間與值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如果$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=2$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-k$\overrightarrow{{e}_{2}}$,且A,C,D三點共線,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.滿足不等式|$\frac{1}{lo{g}_{2}x}$-1|>$\frac{3}{2}$的x的范圍是($\frac{1}{4}$,1)∪(1,$\root{5}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題:
①若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$=λ$\overrightarrow$(λ∈R);
②若m$\overrightarrow{a}$=m$\overrightarrow$(m∈R),則$\overrightarrow{a}$=$\overrightarrow$;
③λ($\overrightarrow{a}$+$\overrightarrow$)=λ$\overrightarrow{a}$+λ$\overrightarrow$(λ∈R).
其中正確的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若f(x)=|x-1|+|x+a|為區(qū)間[-3,b]上的偶函數(shù),則a+b=( 。
A.-2B.4C.2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.等差數(shù)列{an}的前三項分別為x-2,x,3x+2,則它的通項公式an等于( 。
A.2n-4B.2nC.2n+2D.2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)D是△ABC所在平面內(nèi)一點,且$\overrightarrow{BC}=3\overrightarrow{CD}$,設(shè)$\overrightarrow{AD}=x\overrightarrow{AB}+y\overrightarrow{AC}$,則x+y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在銳角三角形ABC中,已知A=2C,則$\frac{a}{c}$的范圍是(  )
A.(0,2)B.($\sqrt{2}$,2)C.($\sqrt{2}$,$\sqrt{3}$)D.($\sqrt{3}$,2)

查看答案和解析>>

同步練習(xí)冊答案