17.一個幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.64B.72C.80D.112

分析 由三視圖可知該幾何體為上部是一四棱錐,高為3,下部為正方體,邊長為4的組合體.分別求得體積再相加.

解答 解:由三視圖可知該幾何體為上部是一四棱錐,下部為正方體的組合體.四棱錐的高h(yuǎn)1=3,正方體棱長為4
V正方體=Sh2=42×4=64,V四棱錐=$\frac{1}{3}$Sh1=$\frac{1}{3}×{4}^{2}×3$=16,
所以V=64+16=80.
故選:C.

點(diǎn)評 本題考查三視圖求幾何體的體積,考查計算能力,空間想象能力,三視圖復(fù)原幾何體是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在四棱柱P-ABCD中,底面ABCD為正方形,PD⊥面ABCD,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F,PD=DC.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)x>0,則函數(shù)y=x2+$\frac{4}{x}$的最小值為3$\root{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線C:y2=2px和⊙M:(x-4)2+y2=1,圓心M到拋物線準(zhǔn)線的距離為6.
(1)求拋物線C的方程;
(2)求以拋物線C的焦點(diǎn)為右頂點(diǎn),且離心率為2的雙曲線C1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知y=ln(x2+x-3),求該函數(shù)的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.等差數(shù)列{an}中,a1>0,d<0,S3=S11,則Sn中的最大值是( 。
A.S7B.S7或S8C.S14D.S8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=ax3+x+1的圖象過點(diǎn)(1,3),則a+f(x)=x3+x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.不等式x2-2x+1≥a2-2a對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為(  )
A.(-∞,0]∪[2,+∞)B.(-∞,-2]∪[0,+∞)C.[0,2]D.[-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.“開門大吉”是某電視臺推出的游戲節(jié)目.選手面對1~8號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其猜對歌曲名稱與否的人數(shù)如圖所示.
(1)寫出2×2列聯(lián)表;判斷是否有90%的把握認(rèn)為猜對歌曲名稱與否和年齡有關(guān);說明你的理由;(下面的臨界值表供參考)
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(2)現(xiàn)計劃在這次場外調(diào)查中按年齡段選取6名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中在20~30歲之間的人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案