4.已知雙曲線C的漸近線方程為3x±2y=0,且焦點在x軸上,焦點到漸近線的距離為6,則該雙曲線的方程為( 。
A.$\frac{x^2}{18}-\frac{y^2}{8}=1$B.$\frac{x^2}{36}-\frac{y^2}{16}=1$C.$\frac{x^2}{8}-\frac{y^2}{18}=1$D.$\frac{x^2}{16}-\frac{y^2}{36}=1$

分析 設雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),求得漸近線方程,由題意可得$\frac{a}$=$\frac{3}{2}$,運用點到直線的距離公式,解方程可得a=4,b=6,進而得到雙曲線的方程.

解答 解:設雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),
可得漸近線方程為y=±$\frac{a}$x,
由題意可得$\frac{a}$=$\frac{3}{2}$,
設一個焦點為(c,0),可得$\frac{3c}{\sqrt{9+4}}$=6,
可得c=2$\sqrt{13}$,即a2+b2=52,
解得a=4,b=9,
則雙曲線的方程為$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{36}$=1.
故選:D.

點評 本題考查雙曲線的方程的求法,注意運用待定系數(shù)法,考查漸近線方程和點到直線的距離公式,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.某單位共有163人,其中老年人27人,中年人55人,青年人81人,為了調查他們的身體狀況,需要從他們中抽取一個容量為36的樣本,問應當采用怎樣的抽樣方法?中年人應抽查多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.2015年勞動節(jié)期間,某單位小張和小李要在5月1日到5月3日三天內值班,每天僅需一人值班,且每人至少值班一天,則所有不同的值班方法共有( 。
A.9種B.8種C.6種D.4種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知數(shù)列{an}的首項a1=1,當n≥2時,an=2an-1+1;
(1)證明:數(shù)列{an+1}是等比數(shù)列;
(2)數(shù)列{bn}中,b1=1,n≥2時,bn-bn-1=an,求數(shù)列{bn}的通項公式bn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知$\left\{\begin{array}{l}{2x+y-5≥0}\\{3x-y-5≤0}\\{x-2y+5≥0}\end{array}\right.$,求(x+1)2+(y+1)2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點為點A,直線l:y=x+a與其兩條漸近線分別交于點B、C,且$\overrightarrow{OC}$+2$\overrightarrow{OA}$=3$\overrightarrow{OB}$,O為坐標原點,則雙曲線的離心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,它的一個頂點到較近焦點的距離為1,焦點到漸近線的距離是$\sqrt{3}$,則雙曲線C的方程為( 。
A.x2-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$-y2=1C.$\frac{{x}^{2}}{\sqrt{3}}$-y2=1D.x2-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左頂點為A,右焦點為F,點B(0,b),且$\overrightarrow{BA}•\overrightarrow{BF}=0$,則雙曲線C的離心率為$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.雙曲線$\frac{{x}^{2}}{3}$-y2=1的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步練習冊答案