15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},|x|≤1}\\{|x|,|x|>1}\end{array}\right.$,若方程f(x)=a有且只有一個(gè)實(shí)根,則實(shí)數(shù)a的值是1.

分析 作函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},|x|≤1}\\{|x|,|x|>1}\end{array}\right.$的圖象,從而化方程的解與函數(shù)的圖象的交點(diǎn).

解答 解:作函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},|x|≤1}\\{|x|,|x|>1}\end{array}\right.$的圖象如下,

結(jié)合圖象可知,當(dāng)a=1時(shí),
方程f(x)=a有且只有一個(gè)實(shí)根,
故答案為:1.

點(diǎn)評(píng) 本題考查了方程的根與函數(shù)的零點(diǎn)的關(guān)系應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),f(x)=2x+x2;則當(dāng)x≥0時(shí),f(x)=-2x+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知n∈N+,函數(shù)f(n)=$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n+1}$,則f(2)-f(1)=-$\frac{1}{20}$;f(n+1)-f(n)=-$\frac{1}{4{n}^{2}+10n+6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,圓O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長(zhǎng)線交圓O于N,過(guò)N 點(diǎn)的切線交C A 的延長(zhǎng)線于P
(1)求證:PM2=PA.PC
(2)若MN=2,OA=$\sqrt{3}$OM,求劣弧$\widehat{BN}$的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知${a^{\frac{2}{3}}}=\frac{4}{9}$,其中a>0,則$lo{g_a}\frac{4}{9}$=$\frac{2}{3}$; $lo{g_a}\frac{2}{3}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆湖北襄陽(yáng)四中高三七月周考三數(shù)學(xué)(文)試卷(解析版) 題型:解答題

選修4-1:幾何證明選講

如圖所示,在中,的角平分線,的外接圓交點(diǎn).

(1)證明:;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某年青教師近五年內(nèi)所帶班級(jí)的數(shù)學(xué)平均成績(jī)統(tǒng)計(jì)數(shù)據(jù)如表:
年份x年20092010201120122013
平均成績(jī)y分9798103108109
(1)利用所給數(shù)據(jù),求出平均分與年份之間的回歸直線方程$\hat y=bx+a$
(2)利用(1)中所求出的直線方程預(yù)測(cè)該教師2015年所帶班級(jí)的數(shù)學(xué)平均成績(jī).
參考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.過(guò)點(diǎn)(0,2a)且垂直y軸的直線與y=|ax-1|有兩個(gè)交點(diǎn),求實(shí)數(shù)a的取值范圍$({0,\frac{1}{2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某學(xué)校高三年級(jí)800名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)吭?2秒到17秒之間,抽取其中50個(gè)樣本,將測(cè)試結(jié)果按如下方式分成五組:第一組[12,13),第二組[13,14),…,第五組[16,17],如圖是根據(jù)上述分組得到的頻率分布直方圖.
(1)若成績(jī)小于13秒被認(rèn)為優(yōu)秀,求該樣本在這次百米測(cè)試中成績(jī)優(yōu)秀的人數(shù);
(2)請(qǐng)估計(jì)本年級(jí)800名學(xué)生中,成績(jī)屬于第三組的人數(shù);
(3)若樣本中第一組只有一名女生,第五組只有一名男生,現(xiàn)從第一、第五組中各抽取1名學(xué)生組成一個(gè)實(shí)驗(yàn)組,求所抽取的2名同學(xué)中恰好為一名男生和一名女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案