分析 由三視圖知,該幾何體是一個(gè)側(cè)面與底面垂直的三棱錐,畫出直觀圖,再建立空間直角坐標(biāo)系,求出三棱錐外接球的球心與半徑,從而求出外接球的表面積.
解答 解:由三視圖知,該幾何體是三棱錐S-ABC,且三棱錐的一個(gè)側(cè)面SAC與底面ABC垂直,
其直觀圖如圖所示;
由三視圖的數(shù)據(jù)可得OA=OC=2,OB=OS=4,
建立空間直角坐標(biāo)系O-xyz,如圖所示;
則A(0,-2,0),B(4,0,0),C(0,2,0),S(0,0,4),
則三棱錐外接球的球心I在平面xOz上,設(shè)I(x,0,z);
由$\left\{\begin{array}{l}{|IB|=|IS|}\\{|IB|=|IC|}\end{array}\right.$得,
$\left\{\begin{array}{l}{{(x-4)}^{2}{+z}^{2}{=x}^{2}{+(z-4)}^{2}}\\{{(x-4)}^{2}{+z}^{2}{=x}^{2}{+2}^{2}{+z}^{2}}\end{array}\right.$,
解得x=z=$\frac{3}{2}$;
∴外接球的半徑R=|BI|=$\sqrt{{(\frac{3}{2}-4)}^{2}{+(\frac{3}{2})}^{2}}$=$\sqrt{\frac{34}{4}}$,
∴該三棱錐外接球的表面積S=4πR2=4π×$\frac{34}{4}$=34π.
故答案為:34π.
點(diǎn)評(píng) 本題考查了由三視圖求幾何體外接球的表面積,解題的關(guān)鍵是判斷幾何體的形狀及外接球的半徑,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | 4 | C. | -$\frac{4}{5}$ | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -e | B. | e | C. | 2e | D. | 3e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com