10.已知數(shù)列{an}的通項(xiàng)公式an=n(14-n),考查這個(gè)數(shù)列的單調(diào)性.并求它的最大項(xiàng).

分析 根據(jù)通項(xiàng)公式an是二次函數(shù),利用二次函數(shù)的圖象與性質(zhì)判斷{an}的單調(diào)性并求出最值.

解答 解:通項(xiàng)公式an=n(14-n)=-n2+14n=-(n-7)2+49,
所以,n<7時(shí),{an}是單調(diào)增數(shù)列,n>7時(shí),{an}是單調(diào)減數(shù)列;
當(dāng)且僅當(dāng)n=7時(shí),an取得最大值49,
即此數(shù)列的最大項(xiàng)是第7項(xiàng),為49.

點(diǎn)評(píng) 本題考查了利用二次函數(shù)的圖象與性質(zhì)判斷數(shù)列的單調(diào)性與最值問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,在小正方形邊長(zhǎng)為1的網(wǎng)格中畫出了某多面體的三視圖,則該多面體的外接球表面積為34π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求下列函數(shù)的定義域:
(1)y=$\sqrt{2si{n}^{2}x+cosx-1}$
(2)y=$\sqrt{lo{g}_{2}\frac{1}{sinx}-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知定義在(-∞,3]上單調(diào)減函數(shù)f(x)使得f(1+sin2x)≤f(a-2cosx)對(duì)一切實(shí)數(shù)x都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若sinx=$\frac{3-2m}{2}$,x∈[-$\frac{π}{6}$,$\frac{5π}{6}$],則m的取值范圍是(  )
A.1≤m≤2B.$\frac{1}{2}$≤m≤2C.-$\frac{1}{2}$≤m≤2D.-2≤m≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,A、B、C所對(duì)的邊分別為a、b、c,且4cosA一4cosAsin2$\frac{A}{2}$=2sin2A.
(1)求角A;
(2)延長(zhǎng)AB至D,使得AD=2AB,若CD=4,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且$\frac{cosB}{cosC}$=$-\frac{2a+c}$.
(1)求角B的大;
(2)若b=4,求△ABC周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知{an}是等比數(shù)列,{bn}是首項(xiàng)為1,公差d大于零的等差數(shù)列,且滿足a1b1=3,a2b2=27,a3b3=135.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求a1b1+a2b2+…+anbn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在y軸上,且長(zhǎng)軸的長(zhǎng)為4,離心率等于$\frac{\sqrt{2}}{2}$.
(1)求橢圓C的方程;
(2)若橢圓C在第一象限的-點(diǎn)P的橫坐標(biāo)為1,過點(diǎn)P作傾斜角互補(bǔ)的兩條不同的直線PA,PB分別交橢圓C于另外兩點(diǎn)A,B.求證:直線AB的斜率為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案