10.設(shè)$\overrightarrow a=(\sqrt{3},1),\overrightarrow b=(x,-3)$,且$\overrightarrow{a}$⊥$\overrightarrow$,則向量$\overrightarrow a-\overrightarrow b$的$\overrightarrow b$夾角為(  )
A.30°B.60°C.120°D.150°

分析 $\overrightarrow{a}$⊥$\overrightarrow$,可得$\overrightarrow{a}•\overrightarrow$=0,解得x.再利用向量夾角公式即可得出.

解答 解:∵$\overrightarrow{a}$⊥$\overrightarrow$,∴$\overrightarrow{a}•\overrightarrow$=$\sqrt{3}$x-3=0,解得x=$\sqrt{3}$.
∴$\overrightarrow a-\overrightarrow b$=(0,4),
∴($\overrightarrow a-\overrightarrow b$)•$\overrightarrow b$=-12,
|$\overrightarrow a-\overrightarrow b$|=4,$|\overrightarrow|$=$\sqrt{(\sqrt{3})^{2}+(-3)^{2}}$=2$\sqrt{3}$,
設(shè)向量$\overrightarrow a-\overrightarrow b$的$\overrightarrow b$夾角為θ,
∴cosθ=$\frac{(\overrightarrow{a}-\overrightarrow)•\overrightarrow}{|\overrightarrow{a}-\overrightarrow||\overrightarrow|}$=$\frac{-12}{2\sqrt{3}×4}$=-$\frac{\sqrt{3}}{2}$,
∵$\overrightarrow{a}$與$\overrightarrow$的夾角為θ的取值范圍是[0,π],
∴θ=150°.
故選:D.

點評 本題考查了向量垂直與數(shù)量積的關(guān)系、向量夾角公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在括號內(nèi)填上適當(dāng)?shù)暮瘮?shù),使下列等式成立:
(1)d(ax)=adx;
(2)d($\frac{2}{3}{x}^{\frac{3}{2}}$)$\sqrt{x}$dx;
(3)d(-$\frac{1}{3}$sin3x)=-cos3xdx;
(4)d($\frac{1}{tanx}$)=-$\frac{1}{1+{x}^{2}}$dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AC=3,AB=5,BC=4,AA1=4,點D是AB的中點.
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求三棱錐D-AA1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.對定義在區(qū)間I上的函數(shù)f(x),若存在開區(qū)間(a,b)?I和常數(shù)C,使得對任意的x∈(a,b)都有-C<f(x)<C,且對對任意的x∉(a,b)都有|f(x)|=C恒成立,則稱函數(shù)f(x)為區(qū)間I上的“Z型”函數(shù),給出下列函數(shù):①$f(x)=\left\{{\begin{array}{l}{2,x≤1}\\{4-2x,1<x<3}\\{-2,x≥3}\end{array}}\right.$;②$f(x)=\sqrt{x}$;③f(x)=|sinx|;④f(x)=x+cosx.其中在定義域上是“Z型”函數(shù)的為( 。
A.B.①②C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知某大城市對每人車流量擁擠等級規(guī)定如表:
車流量(萬輛) 0~10 11~50 51~70 71~80 81~100>100
擁擠等級優(yōu)輕度擁擠中度擁擠重度擁擠嚴重擁擠
該城市對國慶節(jié)7天的車流量作出如表的統(tǒng)計數(shù)據(jù):
日期10月1日10月2日10月3日10月4日10月5日10月6日107日
車流量(萬輛)120110857560105110
(1)求該城市國慶節(jié)期間車流量的平均值與方差;
(2)某人國慶節(jié)連續(xù)2天到該城市游玩,求這2天他遇到的車流量擁擠等級均為嚴重擁擠的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在三棱柱ABM-DCN中,側(cè)面ADNM⊥側(cè)面ABCD,且側(cè)面ABCD是菱形,∠DAB=60°,AD=2,側(cè)面ADNM是矩形,AM=1.E是AB的中點.
(1)求證:AN∥平面MEC;
(2)求三棱錐E-BCM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.長時間用手機上網(wǎng)嚴重影響著學(xué)生的身體健康,某校為了解A、B兩班學(xué)生手機上網(wǎng)的時長,分別從這兩個班中隨機抽取5名同學(xué)進行調(diào)查,將他們平均每周手機上網(wǎng)的時長作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).
(Ⅰ)分別求出圖中所給兩組樣本數(shù)據(jù)的平均值,并據(jù)此估計,哪個班的學(xué)生平均上網(wǎng)時間較長;
(Ⅱ)從A班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為a,從B班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為b,求a>b的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.?dāng)?shù)列{an}中,已知a1=1,S2=2,且Sn+1+2Sn-1=3Sn(n≥2,n∈N*),則數(shù)列{an}為( 。
A.等差數(shù)列B.等比數(shù)列
C.從第二項起為等差數(shù)列D.從第二項起為等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某營養(yǎng)學(xué)家建議:高中生每天的蛋白質(zhì)攝入量控制在[60,90](單位:克),脂肪的攝入量控制在[18,27](單位:克).某學(xué)校食堂提供的伙食以食物A和食物B為主,1千克食物A含蛋白質(zhì)60克,含脂肪9克,售價20元;1千克食物B含蛋白質(zhì)30克,含脂肪27克,售價15元.
(Ⅰ)如果某學(xué)生只吃食物A,判斷他的伙食是否符合營養(yǎng)學(xué)家的建議,并說明理由;
(Ⅱ)為了花費最低且符合營養(yǎng)學(xué)家的建議,學(xué)生需要每天同時食用食物A和食物B各多少千克?并求出最低需要花費的錢數(shù).

查看答案和解析>>

同步練習(xí)冊答案