12.為了解某生產(chǎn)線的運行情況,從該生產(chǎn)線上隨機抽取了15件產(chǎn)品進行檢測,得分低于85分的為不合格品,得分不低于85分的為合格品.該批產(chǎn)品檢測得分情況如下:
(Ⅰ)寫出該組數(shù)據(jù)的中位數(shù)和眾數(shù),并估計該條生產(chǎn)線所生產(chǎn)產(chǎn)品為合格品的概率;
(Ⅱ)若生產(chǎn)一件合格品該廠可獲利270元,生產(chǎn)一件不合格品則虧損90元,估計該廠生產(chǎn)上述150件產(chǎn)品平均一件的利潤.

分析 (Ⅰ)由莖葉圖能求出該組數(shù)據(jù)的中位數(shù)和眾數(shù),抽取的15件產(chǎn)品中,合格品有10件,由此能估計該條生產(chǎn)線所生產(chǎn)的產(chǎn)品為合格品的概率.
(Ⅱ)若生產(chǎn)該產(chǎn)品150件,則有50件不合格品,100件合格品,由此能求出生產(chǎn)150件上述產(chǎn)品平均一件的利潤.

解答 解:(Ⅰ)由已知得該組數(shù)據(jù)的中位數(shù)為87,眾數(shù)為92,
抽取的15件產(chǎn)品中,合格品有10件,
由此估計該條生產(chǎn)線所生產(chǎn)的產(chǎn)品為合格品的概率為p=$\frac{10}{15}$=$\frac{2}{3}$.…(5分)
(Ⅱ)由(Ⅰ)得若生產(chǎn)該產(chǎn)品150件,則有50件不合格品,100件合格品,
∴生產(chǎn)150件上述產(chǎn)品平均一件的利潤為:
$\frac{1}{150}$×(100×270-50×90)=150元.…(12分)

點評 本題考查概率的求法,是中檔題,解題時要認真審題,注意莖葉圖的性質(zhì)及等可能事件概率計算公式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右頂點是圓x2+y2-4x+3=0的圓心,其離心率為$\frac{{\sqrt{3}}}{2}$,則橢圓C的方程為(  )
A.$\frac{x^2}{4}$+y2=1B.$\frac{x^2}{3}$+y2=1C.$\frac{x^2}{2}$+y2=1D.$\frac{x^2}{4}$+$\frac{y^2}{3}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若直線ax+3y-4=0和圓x2+y2+4x-1=0相切,則a的值為(  )
A.6±2$\sqrt{35}$B.2±$\sqrt{35}$C.8±$\sqrt{35}$D.1±$\sqrt{35}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖,拋物線的頂點在坐標原點,焦點為F,過拋物線上一點A(3,y)作準線l作垂線,垂直為B,若△ABF為等邊三角形,則拋物線的標準方程是(  )
A.y2=$\frac{1}{2}$xB.y2=xC.y2=2xD.y2=4x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.“ALS 冰桶挑戰(zhàn)賽”是一項社交網(wǎng)絡(luò)上發(fā)起的籌款活動,活動規(guī)定:被邀請者要么在24小內(nèi)接受挑戰(zhàn),要么選為慈善機構(gòu)捐款(不接受挑戰(zhàn)),并且不能重復參加該活動,若被邀請者接受挑戰(zhàn),則他需在網(wǎng)絡(luò)上發(fā)布自己被冰水澆遍全身的視頻,然后便可以邀請另外3個人參與這項活動,假設(shè)每個人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響,若某參與者接受挑戰(zhàn)后,對其他3個人發(fā)出邀請,則這3個人中至少有2個接受挑戰(zhàn)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.從0,1,2,3,4這五個數(shù)中任選三個不同的數(shù)組成一個三位數(shù),記X為所組成的三位數(shù)各位數(shù)字之和.
(1)求X是奇數(shù)的概率;
(2)求X的概率分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.質(zhì)檢部門從某超市銷售的甲、乙兩種食用油中分劃隨機抽取100桶檢測某項質(zhì)量指標,由檢測結(jié)果得到如下的頻率分布直方圖:

(I)寫出頻率分布直方圖(甲)中a的值;記甲、乙兩種食用油100桶樣本的質(zhì)量指標的方差分別為${s}_{1}^{2}$,${s}_{2}^{2}$,試比較${s}_{1}^{2}$,${s}_{2}^{2}$的大小(只要求寫出答案);
(Ⅱ)估計在甲、乙兩種食用油中隨機抽取1捅,恰有一個桶的質(zhì)量指標大于20,且另一個不大于20的概率;
(Ⅲ)由頻率分布直方圖可以認為,乙種食用油的質(zhì)量指標值Z服從正態(tài)分布N(μ,δ2).其中 μ近似為樣本平均數(shù)$\overline{x}$,δ2近似為樣本方差${s}_{2}^{2}$,設(shè)X表示從乙種食用油中隨機抽取lO桶,其質(zhì)量指標值位于(14.55,38.45)的桶數(shù),求X的數(shù)學期望.
注:①同一組數(shù)據(jù)用該區(qū)問的中點值作代表,計算得s2=$\sqrt{142.75}$≈11.95;
②若Z-N(μ,δ2),則P( μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合A={x|x2-x-2≤0},集合B={x|0<x≤3},則A∩B=( 。
A.(0,1]B.(0,2]C.(2,3)D.[2,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設(shè)x1,x2,x3,x4∈(0,$\frac{π}{2}$),則(  )
A.在這四個數(shù)中至少存在兩個數(shù)x,y,滿足sin(x-y)>$\frac{1}{2}$
B.在這四個數(shù)中至少存在兩個數(shù)x,y,滿足cos(x-y)≥$\frac{{\sqrt{3}}}{2}$
C.在四個數(shù)中至多存在兩個數(shù)x,y,滿足tan(x-y)<$\frac{{\sqrt{3}}}{3}$
D.在這四個數(shù)中至多存在兩個數(shù)x,y,滿足sin(x-y)≥$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步練習冊答案